K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

a) Xét \(\Delta ACI\)và \(\Delta BCI\)có :

\(AC=BC\left(GT\right)\)(1)

\(\widehat{CIA}=\widehat{CIB}=90^o\)(2)

\(CI:\)Cạnh chung (3)

Từ (1) ; (2) và (3)

\(\Rightarrow\Delta ACI=\Delta BCI\left(c-g-c\right)\)

\(\Rightarrow AI=BI\)( cặp cạnh tương ứng )

b) Vì \(AI=BI\)( Câu a)

Mà \(AB=12cm\)

\(\Rightarrow AI=BI=6cm\)

Áp dụng định lí  PY-ta-go cho tam giác vuông \(CIA\)có :

\(IA^2+IC^2=AC^2\)

\(\Rightarrow6^2+IC^2=10^2\)

\(\Rightarrow36+IC^2=100\)

\(\Rightarrow IC^2=100-36\)

\(\Rightarrow IC^2=64\)

\(\Rightarrow IC=\sqrt{64}\)

\(\Rightarrow IC=8cm\)

c) Xét \(\Delta\perp AHI\)và \(\Delta\perp BKI\)có :

\(\widehat{A}=\widehat{B}\)( vì tam giác ACB cân )     (1)

\(IA=IB\)( câu a )   (2)

\(\widehat{AHI}=\widehat{BKI}=90^o\)(3)

Từ (1);(2)và (3)

\(\Rightarrow\Delta\perp AHI=\Delta\perp BKI\)( Cạnh huyền - góc nhọn )

\(\Rightarrow HI=IK\)( cặp cạnh tương ứng )

21 tháng 6 2018

C A B I H K

14 tháng 2 2022

ta có: CB = CA ( = 10 cm )

=> tam giác ABC cân tại C

Mà CI là đường cao nên CI cũng là đường trung trực

=> IA = IB

14 tháng 2 2022

a, Xét ΔAIC vuông tại I và ΔBIC vuông tại I có:

               CA=CB (=10 cm)

               CI là cạnh chung

  ⇒ΔAIC=ΔBIC (trường hợp đặc biệt ,cạnh huyền, cạnh góc vuông)

  ⇒IA=IB (2 cạnh tương ứng)

a: Ta có: ΔCAB cân tại C

mà CI là đường cao

nên I là trung điểm của AB

hay IA=IB

14 tháng 2 2022

ta có: CB = CA ( = 10 cm )

=> tam giác ABC cân tại C

Mà CI là đường cao nên CI cũng là đường trung trực

=> IA = IB

a) Xét ΔCAI vuông tại I và ΔCBI vuông tại I có 

CA=CB(ΔABC cân tại C)

CI chung

Do đó: ΔCAI=ΔCBI(cạnh huyền-cạnh góc vuông)

Suy ra: IA=IB(hai cạnh tương ứng)

b) Xét ΔIHA vuông tại H và ΔIKB vuông tại K có 

IA=IB(cmt)

\(\widehat{A}=\widehat{B}\)(hai góc ở đáy của ΔBAC cân tại C)

Do đó: ΔIHA=ΔIKB(cạnh huyền-góc nhọn)

Suy ra: IH=IK(hai cạnh tương ứng)

c) Ta có: IA=IB(cmt)

mà IA+IB=AB(I nằm giữa A và B)

nên \(IA=IB=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔCAI vuông tại I, ta được:

\(CA^2=CI^2+AI^2\)

\(\Leftrightarrow CI^2=CA^2-AI^2=10^2-6^2=64\)

hay CI=8(cm)

Vậy: IC=8cm

24 tháng 11 2017

Xét 2 tam giác ABC và tam giác A'B'C có:

CA = CA'

CB = CB'

Góc ACB = góc A'CB' (2 góc đối đỉnh)

Suy ra: tam giác ABC = tam giác A'B'C

a: Ta có: ΔCAB cân tại C

mà CI là đường cao

nên I là trung điểm của AB

hay IA=IB

b: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có

CI chung

\(\widehat{HCI}=\widehat{KCI}\)

Do đó; ΔCHI=ΔCKI

Suy ra: IH=IK

c: AB=12cm nên IA=6cm

=>IC=8cm

16 tháng 3 2022

a) Xét hai Δ vuông ACI và Δ BCI ta có:

CICI chung

AC=BCAC=BC

Góc AICAIC=Góc BICBIC=90oo

⇒ Δ ACI=ΔBCIACI=ΔBCI (ch-cgv)

⇒ IA=IBIA=IB (hai cạnh tương ứng bằng nhau)

b) Do `CA=CB=10cmnênnênΔ ABCcânđỉnhCnêngóccânđỉnhCnêngócCAB=gócgócCBA`

hay góc HAIHAI=góc KBIKBI

Xét Δ vuông IHAIHA và Δ IKBIKB có:

IA=IBIA=IB (chứng minh trên)

góc HAIHAI=góc KBIKBI

Góc AHI=BKI=90o90o

⇒ Δ IHAIHA = Δ IKBIKB (ch-gn)

IH=IKIH=IK (hai cạnh tương ứng bằng nhau)

c) IA=IBIA=IB=122122=66

Áp dụng định lý Pytago vào Δ vuông ACI có:

AC²=AI²+IC²AC²=AI²+IC²

⇒ IC²=AC²−AI²=10²−6²=64IC²=AC²-AI²=10²-6²=64

⇒ IC=8

4 tháng 12 2021

Xét tamgiac ABC và tam giác DEC

AC=CD (gt)

BCA=ECD (đđ)

BC=CE (gt)

Vậy tam giác ABC=tam giác DEC (c-g-c)

⇒ CDE=BAC=90 (tương ứng)

21 tháng 7 2018

Ta có: AB+ BC =AC nên ba điểm A, B,C thẳng hàng và B nằm giữa A, C

Khi đó C A → . C B → = C A . C B . cos C A → , C B → = 3.5. cos 0 0 = 15.  

Chọn B.

Cách khác. Ta có  A B 2 = A B → 2 = C B → − C A → 2 = C B 2 − 2 C B → .    C A → + C A 2

⇒ C B → C A → = 1 2 C B 2 + C A 2 − A B 2 = 1 2 3 2 + 5 2 − 2 2 = 15.