Cho tam giác ABC có CA=CB=10cm;AB= 12 cm. Kẻ CI vuông góc vs AB tại I .
a, cm : IA=IB
b,tính độ dài IC
c,kẻ IH vuông góc vs AC tại H, IK vuông góc BC tại K. So sánh IH và IK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: CB = CA ( = 10 cm )
=> tam giác ABC cân tại C
Mà CI là đường cao nên CI cũng là đường trung trực
=> IA = IB
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
ta có: CB = CA ( = 10 cm )
=> tam giác ABC cân tại C
Mà CI là đường cao nên CI cũng là đường trung trực
=> IA = IB
a) Xét ΔCAI vuông tại I và ΔCBI vuông tại I có
CA=CB(ΔABC cân tại C)
CI chung
Do đó: ΔCAI=ΔCBI(cạnh huyền-cạnh góc vuông)
Suy ra: IA=IB(hai cạnh tương ứng)
b) Xét ΔIHA vuông tại H và ΔIKB vuông tại K có
IA=IB(cmt)
\(\widehat{A}=\widehat{B}\)(hai góc ở đáy của ΔBAC cân tại C)
Do đó: ΔIHA=ΔIKB(cạnh huyền-góc nhọn)
Suy ra: IH=IK(hai cạnh tương ứng)
c) Ta có: IA=IB(cmt)
mà IA+IB=AB(I nằm giữa A và B)
nên \(IA=IB=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔCAI vuông tại I, ta được:
\(CA^2=CI^2+AI^2\)
\(\Leftrightarrow CI^2=CA^2-AI^2=10^2-6^2=64\)
hay CI=8(cm)
Vậy: IC=8cm
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
b: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó; ΔCHI=ΔCKI
Suy ra: IH=IK
c: AB=12cm nên IA=6cm
=>IC=8cm
a) Xét hai Δ vuông ACI và Δ BCI ta có:
CICI chung
AC=BCAC=BC
Góc AICAIC=Góc BICBIC=90oo
⇒ Δ ACI=ΔBCIACI=ΔBCI (ch-cgv)
⇒ IA=IBIA=IB (hai cạnh tương ứng bằng nhau)
b) Do `CA=CB=10cmnênnênΔ ABCcânđỉnhCnêngóccânđỉnhCnêngócCAB=gócgócCBA`
hay góc HAIHAI=góc KBIKBI
Xét Δ vuông IHAIHA và Δ IKBIKB có:
IA=IBIA=IB (chứng minh trên)
góc HAIHAI=góc KBIKBI
Góc AHI=BKI=90o90o
⇒ Δ IHAIHA = Δ IKBIKB (ch-gn)
⇒IH=IKIH=IK (hai cạnh tương ứng bằng nhau)
c) IA=IBIA=IB=122122=66
Áp dụng định lý Pytago vào Δ vuông ACI có:
AC²=AI²+IC²AC²=AI²+IC²
⇒ IC²=AC²−AI²=10²−6²=64IC²=AC²-AI²=10²-6²=64
⇒ IC=8
Ta có: AB+ BC =AC nên ba điểm A, B,C thẳng hàng và B nằm giữa A, C
Khi đó C A → . C B → = C A . C B . cos C A → , C B → = 3.5. cos 0 0 = 15.
Chọn B.
Cách khác. Ta có A B 2 = A B → 2 = C B → − C A → 2 = C B 2 − 2 C B → . C A → + C A 2
⇒ C B → C A → = 1 2 C B 2 + C A 2 − A B 2 = 1 2 3 2 + 5 2 − 2 2 = 15.
a) Xét \(\Delta ACI\)và \(\Delta BCI\)có :
\(AC=BC\left(GT\right)\)(1)
\(\widehat{CIA}=\widehat{CIB}=90^o\)(2)
\(CI:\)Cạnh chung (3)
Từ (1) ; (2) và (3)
\(\Rightarrow\Delta ACI=\Delta BCI\left(c-g-c\right)\)
\(\Rightarrow AI=BI\)( cặp cạnh tương ứng )
b) Vì \(AI=BI\)( Câu a)
Mà \(AB=12cm\)
\(\Rightarrow AI=BI=6cm\)
Áp dụng định lí PY-ta-go cho tam giác vuông \(CIA\)có :
\(IA^2+IC^2=AC^2\)
\(\Rightarrow6^2+IC^2=10^2\)
\(\Rightarrow36+IC^2=100\)
\(\Rightarrow IC^2=100-36\)
\(\Rightarrow IC^2=64\)
\(\Rightarrow IC=\sqrt{64}\)
\(\Rightarrow IC=8cm\)
c) Xét \(\Delta\perp AHI\)và \(\Delta\perp BKI\)có :
\(\widehat{A}=\widehat{B}\)( vì tam giác ACB cân ) (1)
\(IA=IB\)( câu a ) (2)
\(\widehat{AHI}=\widehat{BKI}=90^o\)(3)
Từ (1);(2)và (3)
\(\Rightarrow\Delta\perp AHI=\Delta\perp BKI\)( Cạnh huyền - góc nhọn )
\(\Rightarrow HI=IK\)( cặp cạnh tương ứng )
C A B I H K