K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\sqrt{a^2}=\left|a\right|\)

\(\sqrt[3]{a^3}=a\)

b: \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)

a: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=-2\cdot3=-6\)

\(\sqrt[3]{\left(-8\right)\cdot27}=\sqrt[3]{-216}=-6\)

Do đó: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=\sqrt[3]{\left(-8\right)\cdot27}\)

b: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=-\dfrac{2}{3}\)

\(\sqrt[3]{-\dfrac{8}{27}}=-\dfrac{2}{3}\)

Do đó: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\sqrt[3]{-\dfrac{8}{27}}\)

8 tháng 9 2021

ĐK: \(\left\{{}\begin{matrix}\sqrt{x}-3\ge0\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge9\\x\ge0\end{matrix}\right.\Leftrightarrow x\ge9\)

Vì \(A=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\in[0;1)\Rightarrow A< \sqrt{A}\).

 

\(\sqrt{a+2}-\sqrt{a}=\dfrac{2}{\sqrt{a+2}+\sqrt{a}}\)

\(\sqrt{b+2}-\sqrt{b}=\dfrac{2}{\sqrt{b+2}+\sqrt{b}}\)

mà a>b>0

nên \(\sqrt{a+2}-\sqrt{a}< \sqrt{b+2}-\sqrt{b}\)

10 tháng 10 2021

\(A=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)

\(B=\dfrac{1}{\sqrt{14}+\sqrt{13}}\)

mà \(\sqrt{12}+\sqrt{11}< \sqrt{14}+\sqrt{13}\)

nên A>B

NV
30 tháng 7 2021

\(A=\dfrac{2}{\sqrt{17}+\sqrt{15}}\) ; \(B=\dfrac{2}{\sqrt{15}+\sqrt{13}}\)

Mà \(\sqrt{17}+\sqrt{15}>\sqrt{15}+\sqrt{13}>0\)

\(\Rightarrow\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{15}+\sqrt{13}}\)

\(\Rightarrow A< B\)

\(A=\sqrt{17}-\sqrt{15}=\dfrac{2}{\sqrt{17}+\sqrt{15}}\)

\(B=\sqrt{15}-\sqrt{13}=\dfrac{2}{\sqrt{13}+\sqrt{15}}\)

mà \(\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{13}+\sqrt{15}}\)

nên A<B

14 tháng 10 2021

\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)

Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)

Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)

Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

4 tháng 10 2023

\(a,\sqrt{3}và1,7\left(3\right)=1,73205...và1,7\left(3\right)\\ \Rightarrow1,73205>1,7\left(3\right)\\ \Rightarrow\sqrt{3}>1,7\left(3\right).\\ b,-2,236và-\sqrt{5}=-2,236và-2,23606...\\ \Rightarrow-2,236>-2,23606\\ \Rightarrow-2,236>-\sqrt{5} \)

4 tháng 10 2023

a) sai

6 tháng 7 2021

\(A=\sqrt{12+\sqrt{12+\sqrt{12}}}+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6}}}}< \sqrt{12+\sqrt{12+\sqrt{16}}}+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{9}}}}\)\(=7\)

\(B=\sqrt{14}+\sqrt{11}>\sqrt{13,69}+\sqrt{10,89}=7\)

\(\Rightarrow A< B\)

6 tháng 7 2021

Ta có:

 \(12< 16\Rightarrow\sqrt{12}< \sqrt{16}=4\\ 6< 9\Rightarrow\sqrt{6}< \sqrt{9}=3\)

\(\Rightarrow A< \sqrt{12+\sqrt{12+4}}+\sqrt{6+\sqrt{6+\sqrt{6+3}}}=\sqrt{12+4}+\sqrt{6+3}=4+3=7\) (1)

Lại có :

\(B=\sqrt{14}+\sqrt{11}\Rightarrow B^2=25+2\sqrt{14.11}=25+2\sqrt{154}>25+2\sqrt{144}=25+2.12=49=7^2\)

Mà B > 0

\(\Rightarrow B>7\) (2)

Từ (1),(2) suy ra A<B

7 tháng 9 2015

1, \(VT=\left(\sqrt{a+b}\right)^2=a+b\)

VP=\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)

(vì a,b<0 => ab>0 => \(\sqrt{ab}>0\)

=> \(\sqrt{a+b}