Cho \(B=1=3+3^2+....+3^{2006}\)
a) Tính 3A
b) Chứng minh : \(A=\left(3^{2007}-1\right):2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+.......+2^{2007}\Rightarrow2A=2+2^2+2^3+.........+2^{2008}\)
b) sai đề
c) dễ lắm
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
Ta có : A = 1 + 2 + 22 + 23 + ...... + 22007
=> 2A = 2 + 22 + 23 + ...... + 22008
b) Suy ra : 2A - A = 22008 - 1
=> A = 22008 - 1
Vậy đpcm
a) ta có: A = 1 + 2^1 + 2^2 + 2^3 + ...+ 2^2007
=> 2A = 2 + 2^2+2^3+2^4+...+2^2008
b) ta có: 2A = 2 + 2^2 + 2^3 + 2^4+...+2^2008
=> 2A-A = 2^2008 - 1
A = 2^2008 - 1
1) \(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=0+\frac{1}{16}\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}=\left(\frac{1}{4}\right)^2\)
\(\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)
\(\frac{1}{x}=\frac{1}{4}+\frac{2}{3}=\frac{3}{12}+\frac{8}{12}\)
\(\frac{1}{x}=\frac{11}{12}\)=> x*11=1*12
=> x=12/11
x=1,090 909 091 . Vậy x=1,090 909 091
mình không chắc nữa
chúc bạn học tốt!^_^
b = (2m + 1)^2 = 4m^2 + 4m + 1
=> A = (a - 1)(b - 1) = 4m(m -1).4m(m +1)
m(m -1) và m(m+1) đều chia hết cho 2 => A chia hết cho 4.2.4.2 = 64
vì: A chứa m(m-1)(m+1) là tích 3 số nguyên liên tiếp chia hết cho 3
3 và 64 nguyên tố cùng nhau => A chia hết cho 64.3 = 192
a/ Có \(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(\Rightarrow2A=2\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)
b/ Có \(2A-A=\left(2+2^2+2^3+2^4+...+2^{2008}\right)-\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Leftrightarrow A=2+2^2+2^3+2^4+...+2^{2008}-1-2^1-2^2-2^3-...-2^{2007}\)
\(\Leftrightarrow A=2^{2008}-1\)
( bạn có chép sai đề không vậy )
Đề bài sai thay B thành A và đổi dấu bằng sau số 1 thành cộng.ô
a, 3A = 3 + 3^2 + 3^3 +......+ 3^2007
b, 3A - A = 3^2007 - 1
2A = 3^2007 - 1
A = (3^2007 - 1) : 2
Vâỵ ...
a,\(3B=3+3^2+3^3+...+3^{2007}\)
b\(do\)\(3^{2007},1\)LÀ SỐ LẺ NÊN HIỆU LÀ SỐ CHẴN CHIA HẾT CHO 2