K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

\(A=5^{n+2}+5^{n+1}+5^n\)

\(=5^n.5^2+5^n.5^1+5^n.1\)  (tách lũy thừa thành tích) 

\(=5^n\left(5^2+5^1+1\right)=5^n.31⋮31^{\left(dpcm\: \right)}\) (tách ra thừa số chung)

16 tháng 6 2018

\(A=5^{n+2}+5^{n+1}+5^n=5^n.\left(5^2+5^1+1\right)=5^n.\left(25+5+1\right)=31.5^n⋮31\)

21 tháng 10 2017

\(CM:a=5^{n+2}+5^{n+1}+5^n⋮31\)
\(a=5^{n+2}+5^{n+1}+5^n\)
=> \(a=5^n.5^2+5^n.5+5^n\)
=> \(a=5^n\left(5^2+5+1\right)\)
=> \(a=5^n.31\)
\(31⋮31\)=> \(5^n.31⋮31\)
=> \(a⋮31\)(\(đpcm\))


21 tháng 10 2017

a = 5\(^{n+2}\) + 5\(^{n+1}\)+5\(^n\)

= 5\(^n\) .5\(^2\) + 5\(^n\).5 + 5\(^n\)

= 5\(^n\) ( 5\(^2\) +5+1)

= 5\(^n\)(25+5+1) = 5\(^n\) .31 \(⋮\) 31

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

$n$ không chia hết cho $3$ nên $n=3k+1$ hoặc $n=3k+2$ với $k$ tự nhiên.

Nếu $n=3k+1$:
$A=5^{2n}+5^n+1=5^{2(3k+1)}+5^{3k+1}+1$

$=5^{6k}.25+5.5^{3k}+1$

Vì $5^3\equiv 1\pmod {31}$

$\Rightarrow A\equiv 1^{2k}.25+5.1^k+1\equiv 31\equiv 0\pmod {31}$

$\Rightarrow A\vdots 31$

Nếu $n=3k+2$ thì:

$A=5^{2(3k+2)}+5^{3k+2}+1$

$=5^{6k}.5^4+5^{3k}.5^2+1$

$\equiv 1^{2k}.1.5+1^k.5^2+1\equiv 5+5^2+1\equiv 31\equiv 0\pmod {31}$

$\Rightarrow A\vdots 31$

Từ 2 TH suy ra $A\vdots 31$ (đpcm)

26 tháng 10 2016

Ta có:A=\(5^{n+2}+5^{n+1}+5^n\)

A=\(5^n\cdot5^2+5^n\cdot5^1+5^n\)

A=\(5^n\left(5^2+5+1\right)\)

A=\(5^n\cdot31⋮31\left(đpcm\right)\)

26 tháng 10 2016

Ta có: \(A=5^{n+2}+5^{n+1}+5^n\)

\(\Rightarrow A=5^n.5^2+5^n.5+5^n\)

\(\Rightarrow A=5^n.\left(5^2+5+1\right)\)

\(\Rightarrow A=5^n.31⋮31\)

Vậy \(A⋮31\)

13 tháng 12 2018

a) \(A=2^{15}+2^{18}\)

\(A=2^{15}\left(1+2^3\right)\)

\(A=2^{15}\left(1+8\right)\)

\(A=2^{15}\cdot9⋮9\left(đpcm\right)\)

13 tháng 12 2018

câu B phải là c/m nó chia hết cho 30 nhé!

\(B=5^{n+2}+5^{n+1}=5^n\left(5^2+5\right)=30.5^n⋮30^{\left(đpcm\right)}\)

4 tháng 4 2018

với n=0 thì A0=6+25=31 chia hết cho 6

giả sử A đúng với n=k tức là Ak=62K+1+5k+2 chia hết cho 31 ta cần chứng minh A đúng với n=k+1 tức là:

Ak+1=62(k+1)+1+5(k+1)+2 chia hết cho 31. Thật vậy:

Ak+1=62(k+1)+1+5(k+1)+2

       =62k+3+5k+3

       \(=6^2\cdot6^{2k+1}+5^1\cdot5^{k+1}\)

         \(=5\left(6^{2k+1}+5^{k+1}\right)+31\cdot6^{2k+1}\)

  \(=5\cdot A_k+31\cdot6^{2k+1}\)

Do AK chia hết cho 31 nêm 5*AK chia hết cho 31,31 chia hết cho 31 nên 31*62k+1

suy ra đpcm 

đề sai nhé chị

6 tháng 1 2015

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

10 tháng 7 2015

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

7 tháng 3 2018

A=5^n+2+5^n+1+5^n

A=5^n(25+5+1)

A=5^n.31 chia hết cho 31

Vậy A chia hết cho 31

7 tháng 3 2018

\(A=5^n^{+2}+5^n^{+1}+5^n\)

\(A=5^n\cdot5^2+5^n\cdot5+5^n\cdot1\)

\(A=5^n(25+5+1)\)

\(A=5^n\cdot31\)

Vì có thừa số 31 trong tích

=> A chia hết cho 31 \((đcpm)\)