Tìm chữ số tận cùng
20172015
19992001
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
2100 = 24.25 = (...6) có chữ số âận cùng là 6.
71991 = 74.497 = (...1) có chữ số tận cùng là 1
2100=24.25=(...6) có chữ số tận cùng là 6
71991=74.497=(...1) có chữ số tận cùng là 1
"=" là đồng dư
\(2017^3=3\left(mod10\right)=>\left(2017^3\right)^{672}=3^{672}\left(mod10\right)=\left(3^2\right)^{336}=\left(-1\right)^{336}=1\left(mod10\right)\)
vậy 20172016 tận cùng = 1
Ta có:\(2017^{2015}=\left(2017^2\right)^{1007}.2017\)
Mà: \(2017^2\)có chữ số tận cùng là 9.
Mặt khác: Các số có chữ số tận cùng là 9 khi nâng lên lũy thừa bậc lẻ thì luôn có chữ số tận cùng bằng chính nó nên \(\left(2017^2\right)^{1007}\)có chữ số tận cùng là 9.
Mà: \(9.7=63\)
Vậy \(2017^{2015}\)có chữ số tận cùng là 3.
Ta có: \(1999^{2001}=\left(1999^2\right)^{1000}.1999\)
Vì \(1999^2\)có chữ số tận cùng bằng 1.
Mà các số có chữ số tận cùng là 1 khi nâng lên lũy thừa bậc bao nhiêu cùng có chữ số tận cùng là 1 nên \(\left(1999^2\right)^{1000}\)có chữ số tận cùng là 1.
Mà: \(1.9=9\)
Vậy \(1999^{2001}\)có chữ số tận cùng là 9.
Hoặc bạn có thể lí luận là 1999 có chữ sô tận cùng là 9 mà các số có chữ số tận cùng là 9 khi nâng lên lũy thừa bậc lẻ thì luôn có chữ số tận cùng là chính nó nên \(1999^{2001}\)có chữ số tận cùng là 9.
\(\approx\approx\approx\)Học tốt nha \(\approx\approx\approx\)
20172015 = 22012 . 23
= ........6 . 8
= ..........8
19992001 = 19992000 . 1999
= ............1 . 1999
= .............9