Tam giác ABC vuông tại A nt đtr o. D là điểm chính giữa cung nhỏ AC. Tiếp tuyến tại C cắt đường thăng OD tại e. Cm
a) ABC=2ABD. tứ giác AOCE nt
b) ABC=60 độ OB=a. Tính diện tích AOCE theo a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: MA=MC
OA=OC
=>OM là trung trực của AC
=>OM vuông góc AC tại K
góc AHO+góc AKO=180 độ
=>AHOK nội tiếp
b:
góc BMC=1/2*sđ cung BC=90 độ
=>CM vuông góc BC
góc CFE+góc CBM=90 độ
góc CBM+góc MCB=90 độ
=>góc CFE=góc MCB
góc CEM=1/2(sđ cung CM+sđ cung BA)
=1/2(sđ cung AM+sđ cung AB)
=1/2*sđ cung MB
=góc MCB
=>góc CEF=góc CFE
=>ΔCEF cân tại C
1: M là điểm chính giữa của cung AC
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại K
góc AHO+góc AKO=180 độ
=>AHOK nội tiếp
3: Gọi G là trung điểm của AB
ΔOAB cân tại O
mà OG là trung tuyến
nên OG là trung trực của AB
=>OH là một phần đường kính của đường tròn ngoại tiếp ΔOAB
Xet ΔABC co BH/BA=BO/BC
nên OH//AC
=>OH vuông góc OM
=>OM tiếp xúc với đường tròn ngoại tiêp ΔABC
a: góc AHI=góc AKI=90 độ
=>AHIK nội tiếp
b: góc BOC=2*60=120 độ
\(S_{quạtBC}=pi\cdot R^2\cdot\dfrac{120}{360}=\dfrac{1}{3}\cdot pi\cdot R^2\)
a: Xét (O) có
BA,BE là tiếp tuyến
=>BA=BE
mà OA=OE
nên OB là trung trực của AE
=>OB vuông góc AE
=>BH*BO=BA^2
ΔABC vuông tại A có AD vuông góc BC
nên BD*BC=BA^2
=>BH*BO=BD*BC
b: BH*BO=BD/BC
=>BH/BC=BD/BO
=>góc BHD=góc BCO
=>góc DHO+góc DCO=180 độ
=>DHOC nội tiếp
`a)` Ta có: `\hat{AHI}=\hat{AKI}=90^o`
`=>` Tứ giác `AHIK` nội tiếp đường tròn đường kính `AI`
`b)` Ta có: `\hat{COB}=2\hat{CAB}` (cùng chắn cung `BC`)
`=>\hat{COB}=2.60^o =120^o=[2\pi]/3(rad)`
`=>` Độ dài cung `BC` nhỏ là: `l=\hat{COB}.R=[2\pi R]/3`
`=>` Diện tích hình quạt giới hạn bởi `2` bán kính `OB;OC` và cung nhỏ `BC` là:
`S=[lR]/2=[R^2]/3`