K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: MA=MC

OA=OC

=>OM là trung trực của AC

=>OM vuông góc AC tại K

góc AHO+góc AKO=180 độ

=>AHOK nội tiếp

b:

góc BMC=1/2*sđ cung BC=90 độ

=>CM vuông góc BC

góc CFE+góc CBM=90 độ

góc CBM+góc MCB=90 độ

=>góc CFE=góc MCB

góc CEM=1/2(sđ cung CM+sđ cung BA)

=1/2(sđ cung AM+sđ cung AB)

=1/2*sđ cung MB

=góc MCB

=>góc CEF=góc CFE

=>ΔCEF cân tại C

30 tháng 3 2023

loading...  

6 tháng 4 2023

loading...  loading...  loading...  

1: M là điểm chính giữa của cung AC

=>MA=MC

mà OA=OC
nên OM là trung trực của AC

=>OM vuông góc AC tại K

góc AHO+góc AKO=180 độ

=>AHOK nội tiếp

3: Gọi G là trung điểm của AB

ΔOAB cân tại O

mà OG là trung tuyến

nên OG là trung trực của AB

=>OH là một phần đường kính của đường tròn ngoại tiếp ΔOAB

Xet ΔABC co BH/BA=BO/BC

nên OH//AC

=>OH vuông góc OM

=>OM tiếp xúc với đường tròn ngoại tiêp ΔABC

16 tháng 3 2023

Câu 2 thì sao ạ?

a: góc AHI=góc AKI=90 độ

=>AHIK nội tiếp

b: góc BOC=2*60=120 độ

\(S_{quạtBC}=pi\cdot R^2\cdot\dfrac{120}{360}=\dfrac{1}{3}\cdot pi\cdot R^2\)

a: Xét (O) có

BA,BE là tiếp tuyến

=>BA=BE

mà OA=OE

nên OB là trung trực của AE

=>OB vuông góc AE

=>BH*BO=BA^2

ΔABC vuông tại A có AD vuông góc BC

nên BD*BC=BA^2

=>BH*BO=BD*BC

b: BH*BO=BD/BC

=>BH/BC=BD/BO

=>góc BHD=góc BCO

=>góc DHO+góc DCO=180 độ

=>DHOC nội tiếp

8 tháng 5 2023

loading...

`a)` Ta có: `\hat{AHI}=\hat{AKI}=90^o`

   `=>` Tứ giác `AHIK` nội tiếp đường tròn đường kính `AI`

`b)` Ta có: `\hat{COB}=2\hat{CAB}` (cùng chắn cung `BC`)

  `=>\hat{COB}=2.60^o =120^o=[2\pi]/3(rad)`

`=>` Độ dài cung `BC` nhỏ là: `l=\hat{COB}.R=[2\pi R]/3`

  `=>` Diện tích hình quạt giới hạn bởi `2` bán kính `OB;OC` và cung nhỏ `BC` là:

           `S=[lR]/2=[R^2]/3`