K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

ta có: 298 < 2100

=> 298+1<2100+1

\(\Rightarrow\frac{2^{102}+1}{2^{98}+1}>\frac{2^{102}+1}{2^{100}+1}\)

11 tháng 6 2018

nhầm r mn ơi z= \(\frac{2^{100}+1}{2^{98}+1}\)

11 tháng 6 2018

( ghi lại đề ) 

Ta có : 

\(\frac{1}{4}z=\frac{2^{100}+1}{2^{100}+4}=\frac{2^{100}+4-3}{2^{100}+4}=\frac{2^{100}+4}{2^{100}+4}-\frac{3}{2^{100}+4}=1-\frac{3}{2^{100}+4}\)

\(\frac{1}{4}t=\frac{2^{102}+1}{2^{102}+4}=\frac{2^{102}+4-3}{2^{102}+4}=\frac{2^{102}+4}{2^{102}+4}-\frac{3}{2^{102}+4}=1-\frac{3}{2^{102}+4}\)

Lại có : 

\(\frac{3}{2^{100}+4}>\frac{3}{2^{102}+4}\)

\(\Leftrightarrow\)\(-\frac{3}{2^{100}+4}< -\frac{3}{2^{102}+4}\)

\(\Leftrightarrow\)\(1-\frac{3}{2^{100}+4}< 1-\frac{3}{2^{102}+4}\)

\(\Leftrightarrow\)\(\frac{1}{4}z< \frac{1}{4}t\)

\(\Leftrightarrow\)\(z< t\)

Vậy \(z< t\)

Chúc bạn học tốt ~ 

11 tháng 6 2018

ta có: \(T=\frac{2^{102}+1}{2^{100}+1}=\frac{2^2.\left(2^{100}+1\right)-3}{2^{100}+1}=\frac{2^2.\left(2^{100}+1\right)}{2^{100}+1}-\frac{3}{2^{100}+1}\)\(=4-\frac{3}{2^{100}+1}\)

\(Z=\frac{2^{100}+1}{2^{98}+1}=\frac{2^2.\left(2^{98}+1\right)-3}{2^{98}+1}=4-\frac{3}{2^{98}+1}\)

\(\Rightarrow\frac{3}{2^{100}+1}< \frac{3}{2^{98}+1}\)

\(\Rightarrow4-\frac{3}{2^{100}+1}>4-\frac{3}{2^{98}+1}\)

\(\Rightarrow T>Z\)

11 tháng 3 2019

haha!dungs rois!

14 tháng 3 2019

trả lời: \(\frac{1}{100}\) nha

😁 😁 😁

19 tháng 7 2021

khó quá

 

23 tháng 3 2016

llllllllllllllllllllllllllllllllllllllllllll

23 tháng 3 2016

Ủng hộ em vài nha

27 tháng 9 2019

\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)

\(A< \frac{1}{100\cdot101}+\frac{1}{101\cdot102}+\frac{1}{102\cdot103}+\frac{1}{103\cdot104}+\frac{1}{104\cdot105}\)

\(=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)

\(=\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}=\frac{1}{2^2\cdot3\cdot5^2\cdot7}=B\)

Vậy \(A< B\)

10 tháng 3 2020

Cộng 1 vào từng phân số ta sẽ đc

\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{101}+\frac{x+100}{102}+\frac{x+100}{103}\)

\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}\right)=0\)

\(\Rightarrow x=-100\)

10 tháng 3 2020

\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=\frac{x-1}{101}+\frac{x-2}{102}+\frac{x-3}{103}\)

<=> \(\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=\frac{x-1}{101}+1+\frac{x-2}{102}+1+\frac{x-3}{103}+1\)

<=> \(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{101}+\frac{x+100}{102}+\frac{x+100}{103}\)

<=> \(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}\right)=0\)

<=> x + 100 = 0 (vì \(\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}\right)\ne0\))

<=> x = -100