Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 298 < 2100
=> 298+1<2100+1
\(\Rightarrow\frac{2^{102}+1}{2^{98}+1}>\frac{2^{102}+1}{2^{100}+1}\)
Đặt \(A=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)
\(A=\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)+1\) ( 99/1 = 99, tất cả 98 ( không tính 99/1) hạng tử trong A đều cộng với 1 , dư ra 1 chỗ cuối)
\(A=\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}+\frac{100}{100}\) ( 100/100=1)
\(A=100.\left(\frac{1}{2}+...+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)\)
Thay A vào E, có:
\(E=\frac{100.\left(\frac{1}{2}+...+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(E=100\)
\(\Rightarrow E=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+....+\frac{98}{2}+1+1+...+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\) ( Có 99 số 1)
\(\Rightarrow\frac{\frac{1}{99}+1+\frac{2}{98}+\frac{3}{97}+1+...+\frac{98}{2}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)(Nhóm 98 số 1 với 98 phân số đầu ở trên tử)mik viết thiếu nha sorry *-*
\(\Rightarrow E=\frac{\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\Rightarrow E=\frac{\frac{100}{2}+\frac{100}{3}+\frac{100}{4}+...+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\Rightarrow E=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\Rightarrow E=\frac{100.1}{1}=100\)
~Chúc bạn hok tốt~
W= 1 + \(\left(\frac{99}{2}+1\right)+\left(\frac{98}{3}+1\right)+....+\left(\frac{1}{100}+1\right)\)
W= \(\frac{101}{101}+\frac{101}{2}+\frac{101}{3}+...+\frac{101}{99}+\frac{101}{100}\)
W= 101. \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}+\frac{1}{101}\right)\)
( ghi lại đề )
Ta có :
\(\frac{1}{4}z=\frac{2^{100}+1}{2^{100}+4}=\frac{2^{100}+4-3}{2^{100}+4}=\frac{2^{100}+4}{2^{100}+4}-\frac{3}{2^{100}+4}=1-\frac{3}{2^{100}+4}\)
\(\frac{1}{4}t=\frac{2^{102}+1}{2^{102}+4}=\frac{2^{102}+4-3}{2^{102}+4}=\frac{2^{102}+4}{2^{102}+4}-\frac{3}{2^{102}+4}=1-\frac{3}{2^{102}+4}\)
Lại có :
\(\frac{3}{2^{100}+4}>\frac{3}{2^{102}+4}\)
\(\Leftrightarrow\)\(-\frac{3}{2^{100}+4}< -\frac{3}{2^{102}+4}\)
\(\Leftrightarrow\)\(1-\frac{3}{2^{100}+4}< 1-\frac{3}{2^{102}+4}\)
\(\Leftrightarrow\)\(\frac{1}{4}z< \frac{1}{4}t\)
\(\Leftrightarrow\)\(z< t\)
Vậy \(z< t\)
Chúc bạn học tốt ~
ta có: \(T=\frac{2^{102}+1}{2^{100}+1}=\frac{2^2.\left(2^{100}+1\right)-3}{2^{100}+1}=\frac{2^2.\left(2^{100}+1\right)}{2^{100}+1}-\frac{3}{2^{100}+1}\)\(=4-\frac{3}{2^{100}+1}\)
\(Z=\frac{2^{100}+1}{2^{98}+1}=\frac{2^2.\left(2^{98}+1\right)-3}{2^{98}+1}=4-\frac{3}{2^{98}+1}\)
\(\Rightarrow\frac{3}{2^{100}+1}< \frac{3}{2^{98}+1}\)
\(\Rightarrow4-\frac{3}{2^{100}+1}>4-\frac{3}{2^{98}+1}\)
\(\Rightarrow T>Z\)