K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

ta có: 298 < 2100

=> 298+1<2100+1

\(\Rightarrow\frac{2^{102}+1}{2^{98}+1}>\frac{2^{102}+1}{2^{100}+1}\)

11 tháng 6 2018

nhầm r mn ơi z= \(\frac{2^{100}+1}{2^{98}+1}\)

11 tháng 6 2018

( ghi lại đề ) 

Ta có : 

\(\frac{1}{4}z=\frac{2^{100}+1}{2^{100}+4}=\frac{2^{100}+4-3}{2^{100}+4}=\frac{2^{100}+4}{2^{100}+4}-\frac{3}{2^{100}+4}=1-\frac{3}{2^{100}+4}\)

\(\frac{1}{4}t=\frac{2^{102}+1}{2^{102}+4}=\frac{2^{102}+4-3}{2^{102}+4}=\frac{2^{102}+4}{2^{102}+4}-\frac{3}{2^{102}+4}=1-\frac{3}{2^{102}+4}\)

Lại có : 

\(\frac{3}{2^{100}+4}>\frac{3}{2^{102}+4}\)

\(\Leftrightarrow\)\(-\frac{3}{2^{100}+4}< -\frac{3}{2^{102}+4}\)

\(\Leftrightarrow\)\(1-\frac{3}{2^{100}+4}< 1-\frac{3}{2^{102}+4}\)

\(\Leftrightarrow\)\(\frac{1}{4}z< \frac{1}{4}t\)

\(\Leftrightarrow\)\(z< t\)

Vậy \(z< t\)

Chúc bạn học tốt ~ 

11 tháng 6 2018

ta có: \(T=\frac{2^{102}+1}{2^{100}+1}=\frac{2^2.\left(2^{100}+1\right)-3}{2^{100}+1}=\frac{2^2.\left(2^{100}+1\right)}{2^{100}+1}-\frac{3}{2^{100}+1}\)\(=4-\frac{3}{2^{100}+1}\)

\(Z=\frac{2^{100}+1}{2^{98}+1}=\frac{2^2.\left(2^{98}+1\right)-3}{2^{98}+1}=4-\frac{3}{2^{98}+1}\)

\(\Rightarrow\frac{3}{2^{100}+1}< \frac{3}{2^{98}+1}\)

\(\Rightarrow4-\frac{3}{2^{100}+1}>4-\frac{3}{2^{98}+1}\)

\(\Rightarrow T>Z\)

11 tháng 3 2019

haha!dungs rois!

14 tháng 3 2019

trả lời: \(\frac{1}{100}\) nha

😁 😁 😁

23 tháng 3 2016

llllllllllllllllllllllllllllllllllllllllllll

23 tháng 3 2016

Ủng hộ em vài nha

21 tháng 8 2016

\(\frac{20^{101}-1}{20^{102}-1}>\frac{20^{101}-20}{20^{102}-20}=\frac{20.\left(20^{100}-1\right)}{20.\left(20^{101}-1\right)}=\frac{20^{100}-1}{20^{101}-1}\)

\(\Rightarrow\frac{20^{101}-1}{20^{102}-1}>\frac{20^{100}-1}{20^{101}-1}\)

21 tháng 8 2016

tui biết làm nhưng ko mún làm

25 tháng 8 2015

A = \(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)\(\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\) =\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\) 

\(\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)\(\frac{1}{2^2.3.5^2.7}\)= B

Vậy A < B

25 tháng 8 2015

\(A