K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 a.Xét ΔAHB và ΔEHB có 

BH chung

∠ABH=∠EBH (gt)

⇒ ΔAHB = ΔEHB (ch-gn)

b. Do ΔAHB = ΔEHB

⇒AB=EB

⇒ΔEAB cân B

Mà BH là phân giác góc B

⇒BH đồng thời là đường trung trực AE

c. Do ΔAHB = ΔEHB

⇒AH=HE

Xét ΔHEC có ∠HEC=90 độ

⇒HC là cạnh huyền; HE cạnh góc vuông

⇒HC>HE

⇒HC>HA

d. Xét ΔHAI và ΔHEC có

∠AHI=∠EHC ( đối đỉnh )

HA=HE

∠HAI=∠HEC = 90 độ

⇒ΔHAI = ΔHEC (gcg)

⇒AI=EC

mà AB=EB

⇒BI=BC

⇒ΔBIC cân B

mà BH là phân giác góc B

⇒BH đồng thời là đg trung trực của IC

⇒BH⊥IC

19 tháng 6 2021

Bài 1 : 

a, bạn tự làm nhé 

b, \(C\left(x\right)=12-2x^2+\frac{1}{4}x^3-2x-3x^2-10x+\frac{1}{4}x^3-3=9-5x^2+\frac{1}{2}x^3-12x\)

\(D\left(x\right)=12-2x^2+\frac{1}{4}x^3-2x+3+3x^2+10x-\frac{1}{4}x^3=15+x^2+8x\)

c, Đặt \(D\left(x\right)=x^2+8x+15=0\)

\(\Leftrightarrow x^2+5x+3x+15=0\Leftrightarrow\left(x+3\right)\left(x+5\right)=0\Leftrightarrow x=-3;x=-5\)

Vậy x = -3 ; x = -5 là nghiệm của đa thức D(x) 

20 tháng 3 2023

a) Ta có:

\(f\left(x\right)=2x^3-x^5+3x^4+x^2-\dfrac{1}{2}x^3+3x^5-2x^2-x^4+1\)

\(f\left(x\right)=\left(-x^5+3x^5\right)+\left(3x^4-x^4\right)+\left(2x^3-\dfrac{1}{2}x^3\right)+\left(x^2-2x^2\right)+1\)

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

Sắp xếp đa thức f(x) the lũy thừa giảm dần của biến, ta được:

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

b) Bậc của đa thức f(x) là 5

c) Ta có:

\(f\left(1\right)=2\cdot1^5+2\cdot1^4+\dfrac{3}{2}\cdot1^3-1^2+1=5,5\) . Vậy f(1) = 5,5.

\(f\left(-1\right)=2\cdot\left(-1\right)^5+2\cdot\left(-1\right)^4+\dfrac{3}{2}\cdot\left(-1\right)^3-\left(-1\right)^2+1=-1,5\). Vậy f(-1) = -1,5.

8 tháng 5 2022

giúp mình pls khocroi

8 tháng 5 2022

tham khảo link: https://qanda.ai/vi/solutions/uYjsva7GWp

a) \(A\left(x\right)=x^7-2x^6+2x^3-2x^4-x^7+x^5+2x^6-x+5+2x^4-x^5\)

\(A\left(x\right)=(x^7-x^7)+(-2x^6+2x^6)+2x^3+(-2x^4+2x^4)+(x^5-x^5)-x+5\)

\(A\left(x\right)=2x^3-x+5\)

-  Bậc của đa thức A(x) là 3

 - Hệ số tự do: 5

- Hệ số cao nhất: 2

 

b) \(B\left(x\right)=-3x^5+4x^4-2x+\dfrac{1}{2}-2x^4+3x-x^5-2x^4+\dfrac{5}{2}+x\)

\(B\left(x\right)=(-3x^5-x^5)+(4x^4-2x^4-2x^4)+(-2x+x+3x)+\left(\dfrac{1}{2}+\dfrac{5}{2}\right)\)

\(B\left(x\right)=-4x^5+2x+3\)

-  Bậc của đa thức B(x) là 5

 - Hệ số tự do: 3

- Hệ số cao nhất: \(-4\)

 

c) \(C\left(y\right)=5y^2-2.\left(y+1\right)+3y.\left(y^2-2\right)+5\)

   \(C\left(y\right)=5y^2-2y-2+3y\left(y^2-2\right)+5\) 

   \(C\left(y\right)=5y^2-2y-2+3y^3-6y+5\)

   \(C\left(y\right)=5y^2-2y+3+3y^3-6y\)

   \(C\left(y\right)=5y^2-8y+3+3y^3\)

   \(C\left(y\right)=3y^3+5y^2-8y+3\)

-  Bậc của đa thức C(y) là 3

 - Hệ số tự do: 3

- Hệ số cao nhất: 3

   

 

   

 

 

2 tháng 5 2023

Bài 1:

(x² - 8)(x³ + 2x + 4)

= x².x³ + x².2x + x².4 - 8.x³ - 8.2x - 8.4

= x⁵ + 2x³ + 4x² - 8x³ - 16x - 32

= x⁵ - 6x³ + 4x² - 16x - 32

2 tháng 5 2023

Bài 2

a) A(x) = -5/3 x² + 3/4 x⁴ + 2x - 7/3 x² - 2 + 4x + 1/4 x⁴

= (3/4 x⁴ + 1/4 x⁴) + (-5/3 x² - 7/3 x²) + (2x + 4x) - 2

= x⁴ - 4x² + 6x - 2

b) Bậc của A(x) là 4

Hệ số cao nhất là 1

Bài 1:

a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)

\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)

\(=2x-5\)

Bài 1: 

b) 

\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)

\(P\left(3\right)=2\cdot3-5=6-5=1\)

5 tháng 4 2023

a,P(\(x\)) =  \(x^3\) - 2\(x\) + 6 + 3\(x\)4 - \(x\) + 2\(x\)3 - 2\(x\)2

   P(\(x\)) = (\(x^3\) + 2\(x^3\)) - ( 2\(x\) + \(x\) ) + 6 + 3\(x^4\) - 2\(x^2\)

   P(\(x\))  = 3\(x^3\) - 3\(x\) + 6 + 3\(x^4\)- 2\(x^2\)

   P(\(x\) )= 3\(x^4\) + 3\(x^3\) - 2\(x^2\) - 3\(x\) + 6

    Q(\(x\)) = \(x^3\) -  7 + 2\(x^2\) + 3\(x\) - 9\(x^2\) - 2 - 4\(x^3\)

   Q(\(x\)) =  (\(x^3\) - 4\(x^3\)) - ( 7 + 2) - (9\(x^2\) - 2\(x^2\)) + 3\(x\)

   Q(\(x\)) = -3\(x^3\) - 9 - 7\(x^2\) + 3\(x\)

  Q(\(x\)) = -3\(x^3\) - 7\(x^2\) + 3\(x\) - 9

Bậc  cao nhất của P(\(x\)) là 4; hệ số cao nhất là: 3; hệ số tự do là 6

Bậc cao nhất của Q(\(x\)) là 3; hệ số cao nhất là -3; hệ số tự do là -9

 

 

a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3

=4x^4-9x^3+x^2-5x+3

Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x

=5x^4-3x^3+4x^2-5x-2

b)

P(x)

-bậc:4

-hệ số tự do:3

-hệ số cao nhất:4

Q(x)

-bậc :4

-hệ số tự do :-2

-hệ số cao nhất:5

`@` `\text {Ans}`

`\downarrow`

`a)`

`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)

`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`

`= 2x^4 + 2x^3 - 5x + 3`

`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)

`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`

`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`b)`

`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`

`= 2*1 + 2*(-1) + 5 + 3`

`= 2 - 2 + 5 + 3`

`= 8`

___

`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`

`= 4*0 + 4*0 + 2*0 + 5*0 - 2`

`= -2`

`c)`

`G(x) = P(x) + Q(x)`

`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`

`= 6x^4 + 6x^3 + 2x^2 + 1`

`d)`

`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`

Vì `x^4 \ge 0 AA x`

    `x^2 \ge 0 AA x`

`=> 6x^4 + 2x^2 \ge 0 AA x`

`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`

`=> G(x)` luôn dương `AA` `x`

Bài cuối mình không chắc c ạ ;-;

a: A(x)=3x^3+3x-1

B(x)=-2x^3+x^2+4x-3

b: A(x)+B(x)

=3x^3+3x-1-2x^3+x^2+4x-3

=x^3+x^2+7x-4

B(x)-A(x)

=-2x^3+x^2+4x-3-3x^3-3x+1

=-5x^3+x^2+x-2

c; M(x)=x^3+x^2+7x-4

M(-3)=-27+9-21-4=-31-21+9=-43