K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

Có tam giác ABC vuông tại A ( gt )

\(\Rightarrow\) BC\(^2\) = AB\(^2\) + AC\(^2\) ( định lý Pytago )

\(\Rightarrow\) BC\(^2\) = ( 2AC )\(^2\) + AC \(^2\)

\(\Rightarrow\) BC\(^2\) = 2\(^2\) . AC\(^2\) + AC\(^2\)

\(\Rightarrow\) BC\(^2\) = 5AC\(^2\)

Bạn làm tiếp phần còn lại nhé . Chúc bạn học tốt !

2 tháng 6 2018

giair cách số số học gúp mk nha !

1) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

2) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

8 tháng 2 2021

em cảm ơn ạ

 

2 tháng 9 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Ta có:  A B 2   +   A C 2   =   6 2   +   4 , 5 2   =   7 , 5 2   =   B C 2

nên tam giác ABC vuông tại A. (đpcm)

Để học tốt Toán 9 | Giải bài tập Toán 9

= >   ∠ B   =   37 ° = >   ∠ C   =   90 °   -   ∠ B   =   90 °   -   37 °   =   53 °

Mặt khác trong tam giác ABC vuông tại A, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

=> AH = 3,6 cm

b) Gọi khoảng cách từ M đến BC là MK. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta thấy SMBC = SABC khi MK = AH = 3,6 cm

Do đó để SMBC = SABC thì M phải nằm trên đường thẳng song song và cách BC một khoảng là 3,6 cm (có hai đường thẳng như trên hình).

15 tháng 8 2023

loading...

a, Xét \(\Delta\)ABC có: AB2 + AC2 = 62 + 4,52 = 56,25  (cm2)

                        BC2 = 7,52 = 56,25  (cm2)

AB2 + AC2 = BCvậy tam giác ABC vuông tại A (đpcm) 

SinC = 6 : 7,5  =0,8 ⇒ \(\widehat{C}\) = 53,130 ⇒ \(\widehat{B}\) = 900 - 53,130 = 36,870

b, Dựng hình chữ nhật ABCD, chiều cao AH, DK, và đường thẳng d đi qua D song song với BC  như hình vẽ ta có

SABC = SBDC ⇒ AH = DK 

Lây 1 điểm bất M kỳ di động trên đường thẳng d ta có:

SBDC = SMBC  (vì hai tam giác có chiều cao bằng nhau và chung cạnh đáy BC)

⇒ SABC = SMBC

Kết luận khi M di động trên đường thẳng d thì diện tích tam giác MBC luôn bằng diện tích tam giác ABC

 

 

 

 

 

 

 

 

 

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

13 tháng 11 2020

a) Diện tích tam giác ABC (Heron)

\(S_{ABC}=\frac{1}{4}\sqrt{\left(AB+BC+AC\right)\left(AB+BC-AC\right)\left(BC+AC-AB\right)\left(AC+AB-BC\right)}\)

\(S_{ABC}=\frac{1}{4}\sqrt{\left(6+10+8\right)\left(6+10-8\right)\left(10+8-6\right)\left(8+6-10\right)}=24\left(cm^2\right)\)

b)Xét tam giác ABC có 

\(BC^2=10^2=100\left(cm\right)\)

\(AB^2+AC^2=6^2+8^2=100\left(cm\right)\)

Vì 100cm=100cm

\(\Rightarrow BC^2=AB^2+AC^2\)

=> Tam giác ABC vuông tại A 

Xét diện tích tam giác ABC thường \(S_{ABCt}=\frac{AH.BC}{2}\left(1\right)\)

Xét diện tích tam giác ABC vuông \(S_{ABCv}=\frac{AC.AB}{2}\left(2\right)\)

Từ (1) và (2) 

\(\Leftrightarrow AH.BC=AB.AC\)

\(\Leftrightarrow AH.10=8.6\Leftrightarrow AH=4,8\left(cm\right)\)

Xét tam giác ABH vuông tại H 

\(\Rightarrow BH^2=AB^2-AH^2\left(PYTAGO\right)\)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}\)

\(\Rightarrow BH=\sqrt{6^2-13,3^2}=3,6\left(cm\right)\)

Xét tam giác ACH vuông tại H

\(\Rightarrow HC^2=AC^2-AH^2\left(PYTAGO\right)\)

\(\Rightarrow HC=\sqrt{AC^2-AH^2}\)

\(\Rightarrow HC=\sqrt{8^2-4,8^2}=6,4\left(cm\right)\)

14 tháng 11 2020

bút chì đọc tiếng anh là gì ?

8 tháng 1 2022

a) \(\Delta ABC\) vuông tại A (gt).

\(\Rightarrow S_{\Delta ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}6.8=24\left(cm^2\right).\)

b) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2.\Rightarrow BC^2=6^2+8^2.\Leftrightarrow BC^2=36+64=100.\)

\(\Rightarrow BC=10\left(cm\right).\)

c) Ta có: \(S_{\Delta ABC}=\dfrac{1}{2}AH.BC.\)

              \(S_{\Delta ABC}=\dfrac{1}{2}AB.AC.\)

\(\Rightarrow\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC.\)

\(\Rightarrow\dfrac{1}{2}AH.10=24.\Leftrightarrow AH=4,8\left(cm\right).\)

 

8 tháng 1 2022

a)Diện tích tam giác vuông ABC là:

S=1/2* AB *AC = 1/2 * 6 * 8= 24 (cm2)

b)Độ dài cạnh BC là:

theo định lý pytago về tam giác vuông, ta có

BC2= AB2+AC2= 62 + 82 = 100 cm => BC = \(\sqrt{100}\) = 10cm

c) Độ dài đường cao AH

AC2= BC*HC => HC = \(\dfrac{AC^2}{BC}\) = 6,4 cm

BH = BC - HC = 10 - 6,4 = 3,6 cm

AH2 = BH*HC = 6,4 * 3,6 = \(\dfrac{576}{25}\) => AH = \(\sqrt{\dfrac{576}{25}}=4,8cm\)

 

 

 

8 tháng 1 2022

a,

\(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{6.8}{2}=24cm^2\)

b. \(BC^2=AB^2+AC^2\Rightarrow BC=10cm\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=4,8cm

16 tháng 1 2022

a)SABC=6.8=48(cm2)

b)Áp dụng định lý Py-ta-go trong tam giác vuông ABC có: BC=10cm

c)AB.AC=BC.AH =>AH=(AB.AC)/BC=4,8cm