Tính giúp mình
a. (a+b) (a+b)
b. (a-b) (a-b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)
\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)
\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)
a, a = 40; b = 226
a + b = 40 + 226 = 266
b, a = 160; b = 347
a + b = 160 + 347 = 507
Có: \(a+b=a^2+b^2=a^3+b^3\)
\(\Rightarrow a+b+a^3+b^2=2\left(a^2+b^2\right)\)
\(\Rightarrow\left(a-2a^2+a^3\right)+\left(b-2b^2+b^3\right)=0\)
\(\Rightarrow a\left(1-2a+a^2\right)+b\left(1-2b+b^2\right)=0\)
\(\Rightarrow a\left(1-a\right)^2+b\left(1-b\right)^2=0\) (1)
Vì: \(a>0;\left(1-a\right)^2\ge0\)
=> \(a\left(1-a\right)^2\ge0\)
Vì: \(b>0;\left(1-b\right)^2\ge0\)
=> \(b\left(1-b\right)^2\ge0\)
Do đó:
\(\left(1\right)\Leftrightarrow\begin{cases}a\left(1-a\right)^2=0\\b\left(1-b\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}1-a=0\\1-b=0\end{cases}\)\(\Leftrightarrow a=b=1\)
Khi đó; \(a^{2015}+b^{2015}=1^{2015}+1^{2015}=2\)
\(3a^2+3b^2=10ab\)
\(\Leftrightarrow3a^2-10ab+3b^2=0\)
\(\Rightarrow3a^2-9ab-ab+3b^2=0\)
\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)
Trường hợp 1: a=3b
\(A=\dfrac{a-b}{a+b}=\dfrac{3b-b}{3b+b}=\dfrac{2}{4}=\dfrac{1}{2}\)
Trường hợp 2: b=3a
\(A=\dfrac{a-b}{a+b}=\dfrac{a-3a}{a+3a}=\dfrac{-2}{4}=-\dfrac{1}{2}\)
\(\left(-a\right)\times b=-\left(a\times b\right)=-15\)
\(\left(-a\right)\times\left(-b\right)=a\times b=15\)
\(a\times\left(-b\right)=-\left(a\times b\right)=-15\)
a) ( a + b ) ( a + b ) = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2
hoặc = ( a + b )^2 = a^2 + 2ab + b^2 ( áp dụng HĐT )
b) tương tự
a, ( a + b )(a + b)
= (a+b)a + (a+b)b
= a2 + ba + ab + b2
= a2 + b2 + 2ab
b, ( a - b ) ( a - b )
= (a-b)a - (a-b)b
= a2 - ab - ab + b2
= a2 + b2 - 2ab