cho tam giác ABcung C (AB<AC)nội tiếp đường tròn tâm O, M là điểm nằm giữa BC ko chứa điểm A.gọi D,E,F lần lượt là hình chiếu của M trên các đường thảng BC,AC ,AB.CMR:
D,E,F thảng hàng
Mik chỉ cần thế thôi ko cần vẽ hình đâu giúp mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBCD vuông tại C và ΔBMD vuông tại M có
BD chung
\(\widehat{CBD}=\widehat{MBD}\)
Do đó: ΔBCD=ΔBMD
b: Ta có: ΔBCD=ΔBMD
=>BC=BM và DC=DM
Xét ΔBCM có BC=BM và \(\widehat{CBM}=60^0\)
nên ΔBCM đều
Ta có: BD là phân giác của góc CBA
=>\(\widehat{CBD}=\widehat{DBA}=\dfrac{\widehat{CBA}}{2}=\dfrac{60^0}{2}=30^0\)
Ta có: ΔBCA vuông tại C
=>\(\widehat{CBA}+\widehat{CAB}=90^0\)
=>\(\widehat{CAB}=90^0-60^0=30^0\)
Xét ΔDBA có \(\widehat{DAB}=\widehat{DBA}\left(=30^0\right)\)
nên ΔDAB cân tại D
c: Xét ΔDCK vuông tại C và ΔDMA vuông tại M có
DC=DM
CK=MA
Do đó: ΔDCK=ΔDMA
=>DK=DA
=>ΔDKA cân tại D
Ta có: BC+CK=BK
BM+MA=BA
mà BC=BM và CK=MA
nên BK=BA
=>ΔBKA cân tại B
Sửa đề một chút nhé: Tia phân giác của góc A cắt BC tại I
Câu a
Xét tam giác ABI và tam giác ADI có
AB = AD
\(\widehat{BAI}=\widehat{DAI}\)
AI chung
=> Tam giác ABI = tam giác ADI (c.g.c)
=> \(\widehat{ABI}=\widehat{ADI}\) mà \(\widehat{ABI}=90^o\)
=> \(\widehat{ADI}=90^o\)
=>tam giác ADI vuông tại D
b) Có tam giác ABI = ADI
=> BI = DI
Xét tam giác EBI và CDI có
góc EBI = góc CDI = 90 độ (do tam giác ABC vuông tại A và tam giác ADI vuông tại D)
BI = DI
góc BIE = góc DIC (đối đỉnh)
=> Tam giác BIE = tam giácDIC (g.c.g)
=> IE = IC
=> tam giác IEC cân tại I
c) Có tam giác BIE = tam giác DIC => BE = DC
Lại có AB = AD (gt)
=> AB + BE = AD + DC => AE = AC
=> tam giác AEC cân tại A
mà góc BAC hay góc EAC = 60 độ
=> tam giác AEC đều
1) Ta có hình vẽ sau:
Vì AB // CD nên \(\widehat{A_1}\) = \(\widehat{C_1}\) (so le trong)
AD // BC nên \(\widehat{A_2}\) = \(\widehat{C_2}\) ( so le trong)
Xét ΔABC và ΔCDA có:
\(\widehat{A_1}\) = \(\widehat{C_1}\) (cm trên)
AC: Cạnh chung
\(\widehat{A_2}\) = \(\widehat{C_2}\) (cm trên)
\(\Rightarrow\) ΔABC = ΔCDA (g.c.g) (đpcm)
2) Chứng minh tương tự ta có: ΔCDA = ABC (g.c.g)
\(\Rightarrow\) AB = CD ( 2 cạnh tương ứng) (đpcm)
3) Mình sửa lại chỗ AE = AC là AE = AB đó nha, bn ghi nhầm đề!!!
Ta có hình vẽ sau:
Xét ΔABC và ΔAFE có:
AE = AB (gt)
\(\widehat{A_1}\) = \(\widehat{A_2}\) (đối đỉnh)
AF = AC (gt)
\(\Rightarrow\) ΔABC = ΔAFE(c.g.c) (đpcm)
Bạn áp dụng trường hợp bằng nhau cạnh - góc - cạnh của tam giác rồi chứng minh nha
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
a: Xét ΔACB có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
Do đó: ΔCAB=ΔCAD
Suy ra: \(\widehat{BCA}=\widehat{DCA}\)
hay CA là tia phân giác của góc BCD
c: Xét ΔCDB có CD=CB
nên ΔCDB cân tại C
xét tứ giác CEDM có
góc CEM=CDM=90°
suy ra CEDM nội tiếp ( hai góc bằng nhau cùng nhìn cung CM)
suy ra góc EDM+ECM=180°(1)
xét tứ giác MDBF có
góc MDB+BFM=90°+90°=180°
suy ra MDBF nội tiếp
suy ra góc MBF=MDF(2)
ta có góc MCA=1/2sđ cung MA(3)
góc MBF=1/2(sđcung AB+sđcung BM)=1/2sđ cung AM(4)
từ 3,4 suy ra góc MCA=MBF(5)
từ 2,5 suy ra góc MCA=MDF(6)
từ 1,6 suy ra góc EDM+MDF=180°
suy ra E,D,F thẳng hàng (đpcm)