K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

Áp dụng BĐT Cosi ta có:

\(a^3+b^3+c^3\ge3.\sqrt[3]{\left(a^3.b^3.c^3\right)}\ge3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

26 tháng 5 2018

Áp dụng BĐT Cô-si cho ba số dương ta luôn có:

\(x+y+z\ge3\sqrt[3]{xyz}\)

Đặt \(a^3=x,b^3=y,c^3=z\). Ta có:

\(x+y+z=a^3+b^3+c^3=3\sqrt[3]{a^3b^3c^3}\)

\(\ge3abc^{\left(đpcm\right)}\)

Dấu = xảy ra khi và chỉ khi a = b = c

1 tháng 8 2018

\(a^3+1+1\ge3a\)

Tương tự với \(b^3,c^3\)

Suy ra :\(a^3+b^3+c^3\ge3a+3b+3c-6\)\(=3a+3b+3c-2\times3\sqrt[3]{abc}\ge\)\(3a+3b+3c-2a-2b-2c=a+b+c\)

Dấu = xảy ra khi a=b=c=1

18 tháng 11 2019

\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\Rightarrow xy+yz+zx=1\)

Ta có:

\(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}=\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\ge1\)

 để ý \(x^2+y^2+z^2\ge xy+yz+zx\) nha mọi người:)

NV
8 tháng 1 2023

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}=\dfrac{1}{c\left(a^2+b^2\right)}+\dfrac{1}{a\left(b^2+c^2\right)}+\dfrac{1}{b\left(c^2+a^2\right)}\)

\(\ge\dfrac{9}{a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}\)

\(\Rightarrow P\ge a^3+b^3+c^3+\dfrac{9}{2\left(a^3+b^3+c^3\right)}\ge3\sqrt[3]{\left(\dfrac{a^3+b^3+c^3}{2}\right)^2.\dfrac{9}{2\left(a^3+b^3+c^3\right)}}\)

\(=3\sqrt[3]{\dfrac{9\left(a^3+b^3+c^3\right)}{8}}\ge3\sqrt[3]{\dfrac{27abc}{8}}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

21 tháng 10 2021

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=-c\left(a^2-ab+b^2\right)\)

\(=-ca^2-b^2c+abc\)

Ta có đpcm

6 tháng 6 2017

Ta có :

Giả thuyết : a + b + c = 0

(a + b + c)3 = 0

a3 + b3 + c3 + 3.(a + b)(b + c)(c + a) = 0

Từ a + b + c = 0

=> \(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

=> a3 + b3 + c3 + 3.(-c)(-a)(-b) = 0

=> a3 + b3 + c3 = 3abc 

9 tháng 7 2018

Áp dụng bđt cô si dạng engel cho 3 số dương:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Vậy đẳng thức chỉ xảy ra khi a = b = c

Chúc bạn học tốt!

9 tháng 7 2018

Câu hỏi của Pé Ken - Toán lớp 8 - Học toán với OnlineMath tham khảo

18 tháng 8 2018

ta có: 

\(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}\)

hình như bn ghi thiếu đề thì pải?