Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\Rightarrow xy+yz+zx=1\)
Ta có:
\(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}=\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\ge1\)
để ý \(x^2+y^2+z^2\ge xy+yz+zx\) nha mọi người:)
Ta có :
Giả thuyết : a + b + c = 0
(a + b + c)3 = 0
a3 + b3 + c3 + 3.(a + b)(b + c)(c + a) = 0
Từ a + b + c = 0
=> \(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
=> a3 + b3 + c3 + 3.(-c)(-a)(-b) = 0
=> a3 + b3 + c3 = 3abc
Áp dụng bđt cô si dạng engel cho 3 số dương:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Vậy đẳng thức chỉ xảy ra khi a = b = c
Chúc bạn học tốt!
a+b+c=0
a+b=-c
(a+b)^3=(-c)^3
a^3+3a^2b+3ab^2+b^3=(-c)^3
a^3+b^3+c^3=-3a^2b-3ab^2
a^3+b^3+c^3=-3ab(-c)
a^3+b^3+c^3=3abc
\(a^3+b^3+c^3-3abc\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-\left(3a^2b+3ab^2+3abc\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)\(\left(đpcm\right)\)
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
đặt: x = b + c - a > 0
y = a + c - b > 0
z = a + b - c > 0
\(\Rightarrow a=\frac{\left(y+z\right)}{2}\)
\(b=\frac{\left(x+z\right)}{2}\)
\(c=\frac{\left(x+y\right)}{2}\)
\(A=\frac{a}{\left(b+c-a\right)}+\frac{b}{\left(a+c-b\right)}+\frac{c}{\left(a+b-c\right)}\)
\(A=\frac{\left(y+z\right)}{\left(2x\right)}+\frac{\left(x+z\right)}{\left(2y\right)}+\frac{\left(x+y\right)}{\left(2z\right)}\)
\(A=\frac{1}{2}.\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\right)\)
áp dụng BĐT Cauchy-Schwarz, ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
Cộng các BĐT trên, ta được:
\(\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{z}{y}\right)\ge6\)
\(\Rightarrow A\ge\frac{1}{2}.3=6\)(đpcm).
Áp dụng BĐT Cosi ta có:
\(a^3+b^3+c^3\ge3.\sqrt[3]{\left(a^3.b^3.c^3\right)}\ge3abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Áp dụng BĐT Cô-si cho ba số dương ta luôn có:
\(x+y+z\ge3\sqrt[3]{xyz}\)
Đặt \(a^3=x,b^3=y,c^3=z\). Ta có:
\(x+y+z=a^3+b^3+c^3=3\sqrt[3]{a^3b^3c^3}\)
\(\ge3abc^{\left(đpcm\right)}\)
Dấu = xảy ra khi và chỉ khi a = b = c