giải pt x^2-6x-8=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-6x^3+7x^2+6x-8=0\)
\(\Leftrightarrow x^4-4x^3-2x^3+8x^2-x^2+4x+2x-8=0\)
\(\Leftrightarrow x^3\left(x-4\right)-2x^2\left(x-4\right)-x\left(x-4\right)+2\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3-2x^2-x+2\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-2\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{-1;1;2;4\right\}\)
Vậy S={-1;1;2;4}
g: =>(x-1)(x-2)=0
=>x=1 hoặc x=2
i: \(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)
=>x=1 hoặc x=-2
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
g: \(x^2-3x+2=0\)
=>(x-1)(x-2)=0
=>x=1 hoặc x=2
i: \(x^4+x^2+6x-8=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x+2\right)\left(x^2-2x+4\right)+x\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)
=>x=1 hoặc x=-2
1: \(\Leftrightarrow x^4+x^3+x^2-x^3-x^2-x+2008x^2+2008x+2008=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+2008\right)=0\)
hay \(x\in\varnothing\)
2: \(x^4+x^2+6x-8=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)
hay \(x\in\left\{1;-2\right\}\)
ngắn gọn dễ hiểu nha
Ta có :
\(x^2-6x-8=0\)
\(\Leftrightarrow\)\(\left(x^2-6x+9\right)-17=0\)
\(\Leftrightarrow\)\(\left(x^2-2.3x+3^2\right)-17=0\)
\(\Leftrightarrow\)\(\left(x-3\right)^2-17=0\)
\(\Leftrightarrow\)\(\left(x-3\right)^2=17\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-3=\sqrt{17}\\x-3=-\sqrt{17}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{17}\\x=3-\sqrt{17}\end{cases}}}\)
Vậy \(x=3+\sqrt{17}\) hoặc \(x=3-\sqrt{17}\)
Chúc bạn học tốt ~