K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đt tâm O đường kính AH cắt AB tại M, AC tại N.

   1. Chứng minh rằng MN là đường kính của đt O và tứ giác BMNC nội tiếp.

   2. Gọi I là trung điểm của BC, lấy P là điểm đối xứng vs A qua I, gọi Q là trung điểm của HP gọi K là giao điểm của MN và AI.

         a, Chứng minh rằng AI vuông góc vs MN

         b, Chứng minh rằng Q là tâm đường tròn ngoại tiếp tứ giác BMNC

bn đăng những câu này ít người trả lời tử tế lắm ha

a

Đường tròn (O), đường kính AH có 

AMH^=90∘⇒HM⊥AB.

ΔAHB vuông tại H có 

HM⊥AB⇒AH2=AB.AM.

Chứng minh tương tự AH2=AC.AN.

\(\Rightarrow\) AB.AM=AC.AN.

B

Theo câu a ta có 

AB.AM=AC.AN⇒AMAC=ANAB.

Tam giác AMN và tam giác ACB có MAN^ chung và AMAC=ANAB.

⇒ΔAMN∼ΔACB (c.g.c).

\(\widehat{ACB}\)

c.

Tam giác ABC vuông tại A có I là trung điểm của 

BC⇒IA=IB=IC.

⇒ΔIAC cân tại 

Theo câu b ta có \(\widehat{AMN}\)
 

Mà \(\widehat{BAD}\)

\(\widehat{BAD}\)

BAD^+IAC^=90∘⇒BAD^+AMN^=90∘⇒ADM^=90∘.

Ta chứng minh ΔABC vuông tại A có 

AH⊥BC⇒AH2=BH.CH.

Mà 

\(\Rightarrow\) BMNC là tứ giác nội tiếp.

10 tháng 4 2021

TRẢ HIỂU GÌ ?????????????????????

Sửa đề: BF và CE cắt nhau tại H

a) Xét (O) có 

ΔBEC nội tiếp đường tròn(B,E,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

\(\Leftrightarrow CE\perp BE\)

\(\Leftrightarrow CE\perp AB\)

\(\Leftrightarrow\widehat{AEC}=90^0\)

hay \(\widehat{AEH}=90^0\)

Xét (O) có 

ΔBFC nội tiếp đường tròn(B,F,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBFC vuông tại F(Định lí)

\(\Leftrightarrow BF\perp CF\)

\(\Leftrightarrow BF\perp AC\)

\(\Leftrightarrow\widehat{AFB}=90^0\)

hay \(\widehat{AFH}=90^0\)

Xét tứ giác AEHF có 

\(\widehat{AEH}\) và \(\widehat{AFH}\) là hai góc đối

\(\widehat{AEH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét ΔABC có 

BF là đường cao ứng với cạnh AC(cmt)

CE là đường cao ứng với cạnh AB(cmt)

BF cắt CE tại H(gt)

Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)

\(\Leftrightarrow AH\perp BC\)

hay \(AD\perp BC\)(đpcm)

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!Bài 1: Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại Hb) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MACc) Tia BM cắt AO tại N. Chứng minh NA=NHd) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng...
Đọc tiếp

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!

Bài 1: 
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.

Bài 2: 
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD

0
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0
Bài 1:Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:a) Góc AHN = ACBb) Tứ giác BMNC nội tiếp.c) Điểm I là trực tâm tam giác APQ.Bài 2:Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là...
Đọc tiếp

Bài 1:

Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:

a) Góc AHN = ACB

b) Tứ giác BMNC nội tiếp.

c) Điểm I là trực tâm tam giác APQ.

Bài 2:

Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:

a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.

b) KN là tiếp tuyến của đường tròn (O; R).

c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.

 

0