Bạn nào cho mình một số bài nâng cao toán 6, nâng cao vừa vừa thôi. Cách làm luôn thì tốt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có quà đặc biệt sẽ rinh ngay 1 coin mỗi ngày ko thể quên được vì trả lời nhanh và đúng. Ai trả lời sai thì mình cũng ko xử phạt gì đâu mà tặng 1 coin luôn ạ! Vì là tấm lòng đã nhận ngay từ các bạn đến mình rồi đó các bạn nhé. Cứ yên tâm mà trả lời. Bạn nào trả lời đúng mà muộn thì trả coin. Bạn nào ko biết làm thì thôi nhé. Bắt đầu 3 phút thôi nào. Ai chưa làm xong thì tôi cho 2 phút phần nâng cao nhé. Trừ những bạn ko học nâng cao nha.
9 giờ 15 mình sẽ kiểm tra thôi chứ ko hết giờ đâu nhé.
Bạn nào biết thì nói cho mình biết với
đề bài bài 315 trong sách nâng cao và phát triển toán 6 tập 1
Bạn phải lm hả , kb vs mk nha !!! Tick mk đi năm mới chúc mọi người và Online Math năm mới vui vẻ !
Các thông tin cần biết khi tham gia Giúp tôi giải toán
"Giúp tôi giải toán" trên Online Math đã trở thành một diễn đàn hết sức sôi động cho các bạn học sinh, các thầy cô giáo và các bậc phụ huynh từ mọi miền đất nước. Ở đây các bạn có thể chia sẻ các bài toán khó, lời giải hay và giúp nhau cùng tiến bộ. Để diễn đàn này ngày càng hữu ích, các bạn lưu ý các thông tin sau đây:
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các bài toán hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
II. Cách nhận biết câu trả lời đúng
Trên diễn đàn có thể có rất nhiều bạn tham gia giải toán. Vậy câu trả lời nào là đúng và tin cậy được? Các bạn có thể nhận biết các câu trả lời đúng thông qua 6 cách sau đây:
1. Lời giải rõ ràng, hợp lý (vì nghĩ ra lời giải có thể khó nhưng rất dễ để nhận biết một lời giải có là hợp lý hay không. Chúng ta sẽ học được nhiều bài học từ các lời giải hay và hợp lý, kể cả các lời giải đó không đúng.)
2. Lời giải từ các giáo viên của Online Math có thể tin cậy được (chú ý: dấu hiệu để nhận biết Giáo viên của Online Math là các thành viên có gắn chứ "Quản lý" ở ngay sau tên thành viên.)
3. Lời giải có số bạn chọn "Đúng" càng nhiều thì càng tin cậy.
4. Người trả lời có điểm hỏi đáp càng cao thì độ tin cậy của lời giải sẽ càng cao.
5. Các bài có dòng chữ "Câu trả lời này đã được Online Math chọn" là các lời giải tin cậy được (vì đã được duyệt bởi các giáo viên của Online Math.)
6. Các lời giải do chính người đặt câu hỏi chọn cũng là các câu trả lời có thể tin cậy được.
III. Thưởng VIP cho các thành viên tích cực
Online Math hiện có 2 loại giải thưởng cho các bạn có điểm hỏi đáp cao: Giải thưởng chiếc áo in hình logo của Online Math cho 3 - 5 bạn có điểm hỏi đáp cao nhất trong tháng và giải thưởng 1 tháng VIP cho 3 - 5 bạn có điểm hỏi đáp cao nhất trong tuần. Thông tin về các bạn được thưởng tiền được cập nhật thường xuyên tại đây.
Đồng ý với quan điểm của bạn! Chúc bạn thành công với khóa học này.
Thực ra là bạn lấy link sách pdf trên mạng mà :((
Nhưng mấy cái đề HSG có vẻ cũng hữu ích. Tuyên dương tinh thần lụm đề :v
https://vndoc.com/mot-so-bai-tap-toan-nang-cao-lop-9/download
http://h7.net/tu-lieu/toan-nang-cao/toan-nang-cao-lop-9/
https://download.com.vn/docs/mot-so-bai-tap-toan-nang-cao-lop-9/download
https://toancap2.com/toan-9/boi-duong-toan-9/...............................
Giúp tớ với ạ. Cảm ơn.
0,1,2,3,4,5,6,7,8,9,10,11,.. là các dãy số tự nhiên có 103 số. Hỏi số cuối cùng là bao nhiêu ? Giai chi tiết giúp mình với
số cuối cùng của dãy số:0,1,2,3,4,5,6,7,8,9,10,11...... là số 104
Bài 1: Tìm ƯC(2n + 1, 3n + 1).
Bài 2: Tìm ƯCLN(9n + 4; 2n - 1).
Bài 3: Cho a + 5b : 7(a,b €N). CMR: 10a + b : 7, điều ngược lại có đúng không?
Bài 4: Tìm số tự nhiên a biết rằng 398 : 9 thì dư 38 còn còn 450 chia cho a thì dư 18
Bài 5: Tìm hai số tự nhiên biết rằng tổng của chúng là 288 và ƯCLN của chúng là 24.
Bài 6: Tìm hai số tự nhiên biết rằng tổng của chúng là 192 và ƯCLN của chúng là 18.
Bài 7: Tìm hai số tự nhiên nhỏ hơn 56 và biết hiệu của chúng là 28 và ƯCLN của chúng là 14.
Bài 8: Giả sử hai số tự nhiên có hiệu là 84, ƯCLN của chúng là 12. Tìm hai số đó?
Bài 9: Cho hai số tự nhiên nhỏ hơn 200. Biết hiệu của chúng là 90 và ƯCLN là 15. Tìm hai số đó.
Bài 10: Tìm hai số tự nhiên biết rằng tích của chúng là 180 và ƯCLN của chúng là 3
Bài 11: Tìm hai số tự nhiên biết rằng tích của chúng là 8748 và ƯCLN của chúng là 27.
Bài 12: ƯCLN của hai số là 45 số lớn là 270 Tìm số nhỏ
Bài 13: ƯCLN của hai số là 4 số lớn là 8 Tìm số lớn
Bài 14: Tìm hai số tự nhiên a, b biết rằng BCNN(a,b) = 300 và ƯCLN(a,b) = 15.
Bài 15: Tìm hai số tự nhiên a, b biết rằng BCNN(a,b) = 72 và ƯCLN(a,b) = 12.
Bài 16: Tìm hai số tự nhiên biết rằng tích của chúng là 2940 và BCNN của chúng là 210.
Bài 17: Tìm hai số tự nhiên biết rằng tích của chúng là 2700 và BCNN của chúng là 900.
Bài 18: Tìm hai số tự nhiên a, b sao cho Tổng của ƯCLN và BCNN là 15.
Bài 19: Tìm hai số tự nhiên a, b sao cho Tổng của ƯCLN và BCNN là 55.
Bài 20: Tìm hai số tự nhiên a, b sao cho hiệu của BCNN và ƯCLN là 5.
Bài 21: Tìm ƯCLN(7n +3, 8n - 1) với (n €N*). Khi nào thì hai số đó nguyên tố cùng nhau.
Bài 22: Cho (a,b) = 1. Chứng tỏ rằng: (8a + 3) và (5b + 1) là nguyên tố cùng nhau.
Bài 23: Tìm số n nhỏ nhất để: n + 1; n + 3; n + 7 đều là nguyên tố.
Bài 24: Biết (a,b) = 95. Tìm (a + b, a - b).
Bài 25: Tìm n để 9n + 24 và 3n + 4 là hai số nguyên tố cùng nhau (n €N).
Bài 26: Tìm n để: 18n + 3 và 21n + 7 là hai số nguyên tố cùng nhau.
Bài 27: Tìm số tự nhiên nhỏ nhất khi chia cho 5 thì dư 1 còn chia cho 7 thì dư 5.
Bài 28: Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:
a. 4n + 3 và 2n + 3
b. 7n + 13 và 2n + 4
c. 9n + 24 và 3n + 4
d. 18n + 3 và 21n + 7
Bài 29: Cho (a, b) = 1. Tìm:
a. (a + b, a - b);
b. (7a + 9b, 3a + 8b)
Bài 30: Tìm các giá trị a, b thuộc số tự nhiên sao cho:
a. [a, b] + (a, b) = 55
b. [a, b] – (a, b) = 5
c. [a, b] – (a, b) = 35
d. a + b = 30, [a, b] = 6.(a, b).
Bài 31: Số tự nhiên n có 54 ước. Chứng minh rằng tích các ước của n bằng n27.
Bài 32: Số tự nhiên n có 39 ước. Chứng minh rằng:
a. n là bình phương của một số tự nhiên a.
b. Tích các ước của n bằng a39.
Bài 33: Chứng minh rằng tích của ba số chẵn liên tiếp thì chia hết cho 48.
Bài 34: Chứng minh rằng tích của bốn số tự nhiên liên tiếp thì chia hết cho 24.
Bài 35: Cho một số tự nhiên chia hết cho 37 có ba chữ số. Chứng minh rằng bằng cách hoán vị vòng quanh các chữ số, ta được hai số nữa cũng chia hết cho 37.
Bài 36: Chứng minh rằng: (a, b) = (a + b, [a, b]).
Bài 37: Cho số chia hết cho 37. Chứng minh rằng:
a. Các số thu được bằng các hoán vị vòng quanh các chữ số của số đã cho cũng chia hết cho 37.
b. Nếu đổi chỗ a và d, ta vẫn được một số chia hết cho 37. Còn có thể đổi hai chữ số nào cho nhau mà vẫn được một số chia hết cho 37?
knha
tự lên google tìm đi bn