K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

giúp mih đi mih đang làm bài kt

 

a: Xét ΔBAH vuông tại H và ΔBDA vuông tại A có

góc ABH chung

=>ΔBAH đồng dạng với ΔBDA

b: Xét ΔBHK vuông tại H và ΔBCD vuông tại C có

góc HBK chung

=>ΔBHK đồng dạng với ΔBCD

=>BH/BC=BK/BD

=>BH*BD=BK*BC

a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)

Do đó: ΔAHB\(\sim\)ΔBCD(g-g)

28 tháng 3 2021

Mình cần câu c,d,e thôi ạ bạn giúp mình vớii

1) Cho hình chữ nhật ABCD có AB > AD. Vẽ AH vuông góc với BD tại điểm H.   a. Chứng minh △AHB và △BCD đồng dạng    b. Chứng minh BC.AB = AH.BD     c. Tia AH cắt cạnh DC tại M và cắt tia BC tại K. Chứng minh \(HA^2=HK.HM\)2) Cho hình bình hành ABCD, trên tia đối của tia BA lấy BN = AD   a. Chứng minh: △CBN và △CDM cân    b. Chứng minh: △CBN \(\sim\) △MDN    c. Chứng minh: M,C,N thẳng hàng3) Cho △ABC vuông tại A (AB < AC)...
Đọc tiếp

1) Cho hình chữ nhật ABCD có AB > AD. Vẽ AH vuông góc với BD tại điểm H.

   a. Chứng minh △AHB và △BCD đồng dạng

    b. Chứng minh BC.AB = AH.BD 

    c. Tia AH cắt cạnh DC tại M và cắt tia BC tại K. Chứng minh \(HA^2=HK.HM\)

2) Cho hình bình hành ABCD, trên tia đối của tia BA lấy BN = AD

   a. Chứng minh: △CBN và △CDM cân

    b. Chứng minh: △CBN \(\sim\) △MDN

    c. Chứng minh: M,C,N thẳng hàng

3) Cho △ABC vuông tại A (AB < AC) có đường cao AH.

   a. Chứng minh: △ABH\(\sim\)△CBA

    b. Chứng minh: \(AH^2=BH.HC\)

    c. Trên đường thẳng vuông góc với AC tại C, lấy điểm D sao cho CD=AB (D và B nằm khác phía so với đường thẳng AC). Đoạn thẳng HD cắt đoạn thẳng AC tại S. Kẻ \(\text{AF}\perp H\text{S }t\text{ại F}\)

Chứng minh BH.CH = HF.HD

1

3:

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

 

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc ABD chung

=>ΔABD đồng dạng với ΔHBA

b: BD=căn 3^2+4^2=5cm

HB=AB^2/BD=3,2cm

c: AD là phân giác

=>ED/EB=AD/AB

mà AD/AB=AH/BH

nên ED/EB=AH/BH

a: BD=căn 8^2+6^2=10cm

AH=6*8/10=4,8cm

b: Xét ΔADH vuông tại H và ΔCBA vuông tại A có

góc ADH=góc BCA

=>ΔADH đồng dạng với ΔCBA

c: Xét ΔADM và ΔACN có

AD/AC=DM/CN

góc ADM=góc ACN

=>ΔADM đồng dạng với ΔACN

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành