K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc ABD chung

=>ΔABD đồng dạng với ΔHBA

b: BD=căn 3^2+4^2=5cm

HB=AB^2/BD=3,2cm

c: AD là phân giác

=>ED/EB=AD/AB

mà AD/AB=AH/BH

nên ED/EB=AH/BH

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABD\(\sim\)ΔHBA

b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABD\(\sim\)ΔHBA

b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)

2 tháng 5 2022

a. áp dụng định lý pytago vào tam giác vuông ABC, ta có:

BC2=AB2+AC2

BC2= 32+42

BC2= 9+16

BC2=25

BC= 5 (cm)

Vì BD là phân giác 

=> \(\dfrac{AD}{CD}\)=\(\dfrac{AB}{BC}\)

gọi AD là x, CD là 4-x

=> \(\dfrac{x}{4-x}\)=\(\dfrac{3}{5}\)

5x= 3.(4-x)

5x= 12-3x

5x+3x=12

8x=12

x= 1,5 (cm)

Vậy AD= 1,5 cm

b. Xét tam giác ABC và tam giác HBA:

góc A= góc H= 90o

góc B chung

=> tam giác ABC ~ tam giác HBA

c. Vì tam giác ABC ~ tam giác HBA (cmt)

=> \(\dfrac{AB}{HB}\)=\(\dfrac{BC}{AB}\)

=> AB2=BC.HB

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng với ΔABD

b: ΔABD vuông tại A có AH là đường cao

nên DA^2=DH*DB

c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

DH=6^2/10=3,6cm

9 tháng 5 2022

undefined

a) Xét △ABD và △CBE có:

\(\widehat{ADB}=\widehat{BEC}=90^o\)

\(\widehat{B}chung\)

Nên △ABD ∼ △CBE(g.g)

b)Theo câu a, ta có: △ABD ∼ △CB E 

<=>\(\dfrac{AB}{BC}=\dfrac{BD}{BE}\Leftrightarrow AB.BE=BD.BC\)

c)Ta có:

\(BE=\dfrac{BD.BC}{AB}=\dfrac{3.12}{9}=4\left(cm\right)\)

 

9 tháng 5 2022

cảm ơn

 

8 tháng 4 2022

a) Xét ΔABD vàΔ HAD có:

     \(\widehat{DAB}\) =\(\widehat{AHB}\)= 90o( gt)

         \(\widehat{D}\) chung

⇒Δ ABD ∼ ΔHAD(g-g)

b) Áp dụng định lí Py-ta-go vào Δ ABD vuông tại A ta có:

   BD=\(\sqrt{AD^2+AB^2}\)=\(\sqrt{3^2+4^2}\)=\(\sqrt{25}\)=5(cm)

Theo câu a ta có:Δ ABD ∼ ΔHAD

\(\dfrac{BD}{AD}\)=\(\dfrac{AD}{HD}\)hay \(\dfrac{5}{3}\)=\(\dfrac{3}{HD}\)⇒HD=\(\dfrac{3.3}{5}\)=1,8 (cm)

 

 

a: Xét ΔABD vuông tại A và ΔHAD vuông tại H có

góc ADH chung

Do đó: ΔABD\(\sim\)ΔHAD

b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(HD=\dfrac{AD^2}{BD}=1.8\left(cm\right)\)

15 tháng 3 2022

\(a.\) Xét \(\Delta ABC\) và \(\Delta HBA:\)

\(\widehat{B}chung.\)

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)

\(b.\) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=30^2+40^2=2500.\\ \Rightarrow BC=50\left(cm\right).\)

Xét \(\Delta ABC\) vuông tại A, đường cao AH:

\(AH.BC=AB.AC\) (Hệ thức lượng).

\(\Rightarrow AH.50=30.40.\\ \Rightarrow AH=24\left(cm\right).\)