cho hình thang abcd có đáy bằng AB bằng 1/3 CD .ACvà BD cắt nhau tại O . tính diện tích hình tam giác AOB . biết diện tích hình thang ABCD là 96 cm2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC và tam giác ADC có đáy AB = 1/3 đáy CD; chiều cao hạ từ C xuống AB = chiều cao hạ từ A xuống CD
=> S(ABC) = 1/3 x S(ACD)
Mặt khác, hai tam giác này có chung đáy AC nên Chiều cao hạ từ B xuống AC = 1/3 chiều cao hạ từ D xuống AC
+) Xét tam giác AOB và tam giác AOD có : chung đáy AO;
Chiều cao hạ từ B xuống AC = 1/3 chiều cao hạ từ D xuống AC
=> S(AOB) = 1/3 x S(AOD)
=> S(AOB) = 1/4 xS(ABD) (1)
+) Ta có: S(ABD) = S(ABC) = 1/3 x S(ACD)
=> S(ABD) = S(ABC) = 1/4 x S(ABCD) = 1/4 x 96 = 24 cm2
Từ (1) => S(AOB) = 1/4 x 24 = 6 cm2
b) Ta có :
\(S_{ABC}=\frac{1}{2}S_{ADC}\)
- Có chiều cao bằng chiều cao hình thang
- Đáy AB = 1/2 DC
Mặt khác vì hai tam giác có chung đáy AC nên chiều cao hạ từ B xuống O sẽ bằng 1/2 chiều cao hạ từ D xuống O
Từ đó ta có thể suy ra : BO = 1/2 DO (1)
Ta có : \(S_{AOB}=\frac{1}{2}S_{AOD}\)
- Chung cao hạ từ A xuống O
- Đáy BO = 1/2 DO (1)
Hay \(S_{AOB}=\frac{1}{3}S_{ABD}\)
\(\Rightarrow S_{AOB}=\frac{1}{3}\cdot\frac{1}{3}=\frac{1}{9}S_{ABCD}\)