Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC và tam giác ADC có đáy AB = 1/3 đáy CD; chiều cao hạ từ C xuống AB = chiều cao hạ từ A xuống CD
=> S(ABC) = 1/3 x S(ACD)
Mặt khác, hai tam giác này có chung đáy AC nên Chiều cao hạ từ B xuống AC = 1/3 chiều cao hạ từ D xuống AC
+) Xét tam giác AOB và tam giác AOD có : chung đáy AO;
Chiều cao hạ từ B xuống AC = 1/3 chiều cao hạ từ D xuống AC
=> S(AOB) = 1/3 x S(AOD)
=> S(AOB) = 1/4 xS(ABD) (1)
+) Ta có: S(ABD) = S(ABC) = 1/3 x S(ACD)
=> S(ABD) = S(ABC) = 1/4 x S(ABCD) = 1/4 x 96 = 24 cm2
Từ (1) => S(AOB) = 1/4 x 24 = 6 cm2
b) Ta có :
\(S_{ABC}=\frac{1}{2}S_{ADC}\)
- Có chiều cao bằng chiều cao hình thang
- Đáy AB = 1/2 DC
Mặt khác vì hai tam giác có chung đáy AC nên chiều cao hạ từ B xuống O sẽ bằng 1/2 chiều cao hạ từ D xuống O
Từ đó ta có thể suy ra : BO = 1/2 DO (1)
Ta có : \(S_{AOB}=\frac{1}{2}S_{AOD}\)
- Chung cao hạ từ A xuống O
- Đáy BO = 1/2 DO (1)
Hay \(S_{AOB}=\frac{1}{3}S_{ABD}\)
\(\Rightarrow S_{AOB}=\frac{1}{3}\cdot\frac{1}{3}=\frac{1}{9}S_{ABCD}\)
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng vơi ΔOCD
=>\(\dfrac{S_{OAB}}{S_{OCD}}=\left(\dfrac{AB}{CD}\right)^2=\dfrac{1}{9}\) và OA/OC=AB/CD=1/3
=>\(S_{OCD}=54\left(cm^2\right)\) và \(S_{BOC}=3\cdot S_{BOA}=3\cdot6=18\left(cm^2\right)\)
=>\(S_{AOD}=18\left(cm^2\right)\)
\(S_{ABCD}=18+18+54+6=60+36=96\left(cm^2\right)\)