Ai giải giúp mình bài toán 9 này với ạ
Tìm các số nguyên dương x,y,z thỏa
\(^{x^2=2x+\overline{yzz4}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do x+y+z=1 nên 1/x+1/y+1/z sẽ bằng \(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}=1+\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}+1\)
\(=3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)
Ta có
\(\frac{x}{y}+\frac{y}{z}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
Cộng vế theo vế của 3 bất đẳng thức trên ta được
\(\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\ge6\)
Cộng 3 vào 2 vế bất đẳng thức
\(\Rightarrow3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\ge9\)
Mà \(3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge9\)
Xong !!!!
T I C K nha cảm ơn nhìu
CHÚC BẠN HỌC TỐT
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}=9\left(đpcm\right)\)
Dấu "=" xảy ra <=> x=y=z=1/3
Ta có:
\(x^3+y^3+z^3=3xyz\)
nên \(x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x^3+y^3\right)+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2+\left(x+y\right).z+z^2\right]-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)\right]=0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Leftrightarrow^{x+y+z=0}_{x=y=z}\)
Do đó:
\(M=\left(2-\frac{x}{y}\right)^{2013}+\left(3-\frac{2x}{z}\right)^{2014}+\left(4-\frac{3z}{x}\right)^{2015}\)
\(=\left(2-\frac{y}{y}\right)^{2013}+\left(3-\frac{2z}{z}\right)^{2014}+\left(4-\frac{3x}{x}\right)^{2015}\)
\(=\left(2-1\right)^{2013}+\left(3-2\right)^{2014}+\left(4-3\right)^{2015}\)
\(M=1^{2013}+1^{2014}+1^{2015}=1+1+1=3\)
----------------------------------------------------