Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(A=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}=\frac{1}{x(x+1)}+\frac{1}{y(y+1)}+\frac{1}{z(z+1)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{y}-\frac{1}{y+1}+\frac{1}{z}-\frac{1}{z+1}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)(1)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x}+\frac{1}{1}\geq \frac{4}{x+1}\) và tương tự với các phân thức còn lại rồi cộng lại:
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+3\geq 4\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\Leftrightarrow \frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\leq \frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+3\right)(2)\)
Từ (1); (2) suy ra \(A\geq \frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\right)\)
Mà theo BĐT Cauchy- Schwarz ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}=\frac{9}{3}=3\)
Do đó: \(A\geq \frac{3}{4}(3-1)=\frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=1\)
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=z^2+\left(x+y\right)^2+2z\left(x+y\right)=36\)
áp dụng BĐT cosi :
\(z^2+\left(x+y\right)^2\ge2z\left(x+y\right)\)
<=> \(z^2+\left(x+y\right)^2+2z\left(x+y\right)\ge4z\left(x+y\right)=36< =>z\left(x+y\right)\ge9\)
ta lại có \(\dfrac{x+y}{xyz}=\dfrac{x}{xyz}+\dfrac{y}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xz}\) áp dụng BĐT buhihacopxki dạng phân thức => \(\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{4}{yz+xz}=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\left(đpcm\right)\)
dấu bằng xảy ra khi \(\left[{}\begin{matrix}yz=xz< =>x=y\\x+y+z=6\\z^2=\left(x+y\right)^2\end{matrix}\right.< =>\left[{}\begin{matrix}x+y+z=6\\z=2x=2y\end{matrix}\right.< =>\left[{}\begin{matrix}x=y=\dfrac{3}{2}\\z=3\end{matrix}\right.\)
-Ủa vì sao\(\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\)? Đáng lẽ là \(\dfrac{4}{z\left(x+y\right)}\le\dfrac{4}{9}\) chứ?
C1:Biến đổi tương đương
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\Leftrightarrow\dfrac{x}{xy}+\dfrac{y}{xy}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+y^2+2xy\ge4xy\Leftrightarrow x^2+y^2-2xy\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)
C2:Dùng AM-GM
\(x+y\ge2\sqrt{xy}\);\(\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{\dfrac{1}{x}\cdot\dfrac{1}{y}}=2\sqrt{\dfrac{1}{xy}}\)
Nhân theo vế 2 BĐT
\(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge4\sqrt{xy\cdot\dfrac{1}{xy}}=4\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
C3:Dùng Cauchy-Schwarz (dạng Engel)
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)
-3 cách trên đều có dấu "=" khi \(x=y\)
Ta có: \(36=\left[\left(x+y\right)+z\right]^2\ge4z\left(x+y\right)\)(1)
\(\left(x+y\right)^2\ge4xy\)(2)
Nhân theo vế (1) và (2), ta được: \(36\left(x+y\right)^2\ge16xyz\left(x+y\right)\Rightarrow\frac{x+y}{xyz}\ge\frac{4}{9}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=z;x=y\\x,y>0;x+y+z=6\end{cases}}\Leftrightarrow x=y=\frac{3}{2};z=3\)
ta có \(\frac{1}{x^2+x}+\frac{x^2+x}{4}>=2\cdot\sqrt{\frac{1\cdot\left(x^2+x\right)}{\left(x^2+x\right)\cdot4}}=1\)
tương tự => \(\frac{1}{y^2+y}+\frac{y^2+y}{4}>=1;\frac{1}{z^2+z}+\frac{z^2+z}{4}>=1\)
=> VT >= 3-(\(\frac{x^2+x}{4}+\frac{y^2+y}{4}+\frac{z^2+z}{4}\))=3-\(\frac{x^2+y^2+z^2+3}{4}\)
mà \(\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}>=\frac{\left(x+y+z\right)^2}{4+4+4}=\frac{3}{4}\)
=> P>= 3-3/4-3/4=3/2
Dấu bằng khi x=y=z=1
Bài bạn Lương Ngọc Anh bị ngược dấu nên sai hoàn toàn. Lời giải:
Ta có:
\(\frac{1}{x^2+x}=\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
Tương tự, ta được:
\(VT=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng BĐT Schwarz:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\le\frac{1}{4}\left(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Do đó:
\(VT\ge\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{3}{4}\left(1\right)\)
Mặt khác:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3\left(2\right)\)
TỪ (1) VÀ (2) TA CÓ ĐIỀU PHẢI CHỨNG MINH.
Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!
vỗ tay vì chữ đợp quớ:>