4/5x7+4/7x9+4/9x11+4/11*13.........+4/99x101
/ là dấu gạch ngang giữa phân số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{99.101}\)
\(=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{101}\right)\)
\(=2.\left(\frac{101}{505}-\frac{5}{505}\right)\)
\(=2.\frac{96}{505}\)
\(=\frac{192}{505}\)
Chúc bạn học tốt !!!
Đặt \(A=\frac{4}{3\times5}+\frac{4}{5\times7}+\frac{4}{7\times9}+...+\frac{4}{99\times101}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{99\times101}\)
\(\Leftrightarrow\frac{A}{2}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Leftrightarrow\frac{A}{2}=\frac{1}{3}-\frac{1}{101}\)
\(\Leftrightarrow\frac{A}{2}=\frac{98}{303}\)
\(\Leftrightarrow A=\frac{98}{303}\times2\)
\(\Leftrightarrow A=\frac{196}{303}\)
\(A=\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+...+\frac{4}{59.61}\)
\(A=2\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{59.61}\right)\)
\(A=2\left(\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}+...+\frac{61-59}{59.61}\right)\)
\(A=2\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(A=2\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{112}{305}\).
4/5x7 + 4/7x9 + 4/9x11 + ... + 4/50x61
= 2x(2/5x7 + 2/7x9 + 2/9x11 + ... + 2/59x61)
= 2x [(1/5-1/7)+(1/7-1/9)+(1/9-1/11)+...+(1/59-1/61)]
= 2x(1/5-1/61)
= 2x 56/305
= 112/305
B=2/3x5 + 2/5x7 + 2/7x9 + ...+2/99x101
B= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 -1/9 + ... + 1/99 - 1/101
B= 1/3 - 1/101
B=98/303
( k mk nhé ! Cách làm câu a và b của mk đều đúng 100% đấy ! Dạng này mk học từ lâu rồi ! )
A = \(\dfrac{4}{1\times3}\) - \(\dfrac{8}{3\times5}\) + \(\dfrac{12}{5\times7}\) - \(\dfrac{16}{7\times9}\) + \(\dfrac{20}{9\times11}\) - \(\dfrac{24}{11\times13}\)
A = ( \(\dfrac{1}{1}+\dfrac{1}{3}\)) - ( \(\dfrac{1}{3}\) + \(\dfrac{1}{5}\)) + (\(\dfrac{1}{5}\)+ \(\dfrac{1}{7}\)) - ( \(\dfrac{1}{7}\) + \(\dfrac{1}{9}\)) +( \(\dfrac{1}{9}\)+ \(\dfrac{1}{11}\)) - (\(\dfrac{1}{11}\)+\(\dfrac{1}{13}\))
A = \(\dfrac{1}{1}+\dfrac{1}{3}\) - \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{7}\) - \(\dfrac{1}{7}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{11}\) - \(\dfrac{1}{13}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{13}\)
A = \(\dfrac{12}{13}\)
\(\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+...+\frac{4}{99.101}\)
\(=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{99.101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{101}\right)\)
\(=2.\frac{96}{505}\)
\(=\frac{192}{505}\)