tìm x nguyên để \(x^2-2x-14\)là số chính phương
Mk đang cần gấp các bạn giải hộ mk nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(n^5-n+2=n\left(n^4-1\right)+2\)
\(=n\left(n^2+1\right)\left(n^2-1\right)+2\)
\(=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)+2\)
Ta có n - 1; n; n + 1 là 3 số tự nhiên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)⋮3\)
Suy ra \(\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)+2\)chia 3 dư 2.
Mà ta có: Số chính phương chia 3 dư 0 hoặc 1
Thật vậy: +) Nếu m = 3k thì \(m^2=9k^2⋮3\)(chia 3 dư 0)
+) Nếu m = 3k + 1 thì \(m^2=9k^2+6k+1\)(chia 3 dư 1)
+) Nếu m = 3k + 2 thì \(m^2=9k^2+12k+4\)(chia 3 dư 1)
Vậy không có số nguyên dương n để n5 - n + 2 là số chính phương.
`|x-2|=2x-3(x>=3/2)`
`<=>` \(\left[ \begin{array}{l}x-2=2x-3\\x-2=3-2x\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=1(l)\\3x=5\end{array} \right.\)
`<=>x=5/3(Tm(`
`2)A=-x^2+2x+9`
`=-(x^2-2x)+9`
`=-(x^2-2x+1)+1+9`
`=-(x-1)^2+10<=10`
Dấu "=" xảy ra khi `x=1.`
1,
* \(|x-2|=x-2< =>x\ge2\)
\(=>x-2=2x-3< =>x=1\left(ktm\right)\)
*\(\left|x-2\right|=2-x< =>x< 2\)
\(=>2-x=2x-3< =>x=\dfrac{5}{3}\left(tm\right)\)
vậy x=5/3
2, \(A=-x^2+2x+9=-\left(x^2-2x-9\right)=-\left(x^2-2x+1-10\right)\)
\(=-\left[\left(x-1\right)^2-10\right]=-\left(x-1\right)^2+10\le10\)
dấu"=" xảy ra<=>x=1
ĐK của A \(x\ne4\),ĐK của B \(\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)
a, \(x^2-3x=0\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Với \(x=0\Rightarrow A=\frac{-5}{-4}=\frac{5}{4}\)
Với \(x=3\Rightarrow A=\frac{3-5}{3-4}=2\)
b. \(B=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-10x+25}{2x\left(x-5\right)}=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)
c. \(P=\frac{A}{B}=\frac{x-5}{x-4}.\frac{2x}{x-5}=\frac{2x}{x-4}=\frac{2x-8}{x-4}+\frac{8}{x-4}=2+\frac{8}{x-4}\)
P nguyên \(\Leftrightarrow x-4\inƯ\left(8\right)\Rightarrow x-4\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{-4;0;2;3;5;6;8;12\right\}\)
So sánh điều kiện ta thấy \(x\in\left\{-4;2;3;6;8;12\right\}\)thì P nguyên
xy + 2x + 3y +5 = 0
x(y+2) + 3y +6 - 1 = 0
x(y+2) + 3(y+2) - 1 = 0
(y+ 2 ) (x+3) = 1
\(\Rightarrow\)y+2 và x+3 \(\in\)Ư(1) = { -1 , 1 }
ta có bảng
y+2 | -1 | 1 |
x+3 | -1 | 1 |
y | -3 | -1 |
x | -4 | -2 |
vậy (x,y) \(\in\){ (-4,-3) ; ( -2, -1 ) }
Ta có I2x-1I >= 0 với mọi x thuộc Z
Ix+2I >= 0 với mọi x thuộc Z
Ix+3I >=0 với mọi x thuộc Z
Vì I2x-1I+Ix+2I+Ix+3I=5x-1
=> 5x-1 >=0
=> I2x-1I+Ix+2I+Ix+3I=2x-1+x+2+x+3=4x+4
=> 4x+4=5x-1
<=> 4x-5x=-1-4
<=> -x=-5
<=> x=5
Vậy x=5
<=> 2x + 12 = 3x - 21
<=> 2x - 3x = -21 - 12
<=> -x = -33
<=> x = 33
Ta có: \(x^2-2x-14=y^2\) (y nguyên)
\(\Leftrightarrow\left(x-1\right)^2-15=y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2=15\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=15\)
Mà x-y-1< x+y-1 với mọi x,y
Ta sẽ có các Trường hợp
....