chứng tỏ rằng đa thức f(x)=x^2+2x+3 không có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2x-8=x^2+2x+1-9\)
mà : \(x^2+2x+1=x^2+x+x+1=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)^2\)
\(=\left(x+1\right)^2-9=\left(x+1-3\right)\left(x+1+3\right)=\left(x-2\right)\left(x+4\right)\)
giả sử đa thức trên có nghiệm khi
Đặt \(\left(x-2\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=2\)
Vậy giả sử là đúng hay ko xảy ra đpcm ( đa thức trên ko có nghiệm )
\(x^2+2x+3=\left(x^2+2x.1+1^2\right)+2=\left(x+1\right)^2+2\ge2\) > 0 với mọi x
Vậy đa thức f(x) không có nghiệm
Giả sử đa thức f(x) có nghiệm, hay tồn tại nghiệm x sao cho x2 + 2x + 3 = 0.
\(\Rightarrow x^2+2x+1+2=0\)
\(\Rightarrow x^2+x+x+1+2=0\)
\(\Rightarrow x\left(x+1\right)+\left(x+1\right)+2=0\)
\(\Rightarrow\left(x+1\right)\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)^2+2=0\)
\(\left(x+1\right)^2\ge0\text{ với mọi }x\Rightarrow\left(x+1\right)^2+2\ge2\left(\text{vô lý}\right)\)
\(\Rightarrow\text{không tồn tại nghiệm của }f\left(x\right)=x^2+2x+3\)
Ta có: x2 + 2x + 2 = x2 + x + x + 1 + 1
= x(x + 1) + (x + 1) + 1
= (x + 1)(x + 1) + 1 = (x + 1)2 + 1
Vì (x + 1)2 ≥ 0 với mọi x ∈ R, nên (x + 1)2 + 1 > 0 với mọi x ∈ R
Vậy đa thức x2 + 2x + 2 không có nghiệm.
\(f\left(x\right)=x^2+1\ge1\)
=> Đa thức không có nghiệm
f(x) = x2 -x-x + 3
= (x2 - x) - x+3
= x(x-1)- x+1+2
=x(x-1) - (x-1) + 3
= (x-1)(x-1) +3
= (x-1)2+3
có (x-1 )2 lớn hơn hoặc = 0
suy ra (x-1)2 + 3 lớn hơn 0; suy ra đa thức này vô nghiệm
nhớ k đấy
Ta có:
x2-x+1=x2-\(\dfrac{1}{2}x+\dfrac{1}{2}x\)+\(\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x-\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x-\dfrac{1}{2}\right)+\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\dfrac{3}{4}\)
Vậy f(x)≥\(\dfrac{3}{4}\)∀ x
=>f(x) vô nghiệm
\(x^2-6x+12\)
\(=x^2-3x-3x+9+3\)
\(=\left(x^2-3x\right)+\left(-3x+9\right)+3\)
\(=x\left(x-3\right)-3\left(x-3\right)+3\)
\(=\left(x-3\right)\left(x-3\right)+3\)
\(=\left(x-3\right)^2+3\)
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3>0\)
Vậy \(P\left(x\right)=x^2-6x+12\) không có nghiệm
x^2+2x+3 = (x^2+2x+1) + 2 = (x+1)^2 +2
Mà (x+1)^2 \(\ge\)0
=> (x+1)^2 +2 \(\ge\)0 + 2 = 2 > 0
Suy ra đa thức vô nghiệm
ta có:x2>0 với mọi x; 2x > 0 với mọi x; 3 >0
=> x2 + 2x + 3 > 0
=> đa thức trên ko có nghiệm
Chúc bn hok tốt!!!^^