tính \(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)\)
a) rút gọn A
b) tính A với \(a=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)\)
\(A=\)\(\left[\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4\sqrt{a}\left(a-1\right)}{a-1}\right]\left[\frac{a+1}{\sqrt{a}}\right]\)
\(A=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{a-1}.\) \(\frac{a+1}{\sqrt{a}}\)
\(A=\frac{4a\sqrt{a}}{a-1}.\frac{a+1}{\sqrt{a}}\)
\(A=\frac{4a\left(a+1\right)}{a-1}\)
ta có \(a=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(a=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(a=\left(4+\sqrt{15}\right).2\left(4-\sqrt{15}\right)\)
\(a=2\left(16-15\right)\)
\(a=2\)
khi đó \(A=\frac{4.2.\left(2+1\right)}{2-1}=8.3=24\)
vậy.....