K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chụy @Trần Thị Trúc Linh ơi! làm hộ em bài này cái

kuroba kaitoNhã DoanhngonhuminhPhạm Nguyễn Tất Đạt

5 tháng 8 2016

Bạn tự vẽ hình nha

Xét tg ABC có các đường trung tuyến AM, BD, CE. Đặt BC= a; AC= c. Theo bài ra ta có: AM< \(\frac{b+c}{2}\) 

CMTT: BD< \(\frac{a+c}{2}\) ; CE < \(\frac{a+b}{2}\) 

Suy ra AM+BD+CE < a+b+c

Ta có BD+CE> \(\frac{3}{2}\) a

CMTT ta có:AM+CE > \(\frac{3}{2}\) b

                    AM+BD> \(\frac{3}{2}\) c

Suy ra 2(AM+BD+CE) > \(\frac{3}{2}\) ( a+c+c)

Do đó : AM+BD+CE > \(\frac{3}{4}\) ( a+b+c )

5 tháng 8 2016

*) Chứng minh: AM + BD + CE < AB + BC + CA

+) Trên tia đối của tia MA lấy K sao cho MÃ = MK

Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC

+) Xét tam giác ABK có: AK < AB +BK mà AK = 2.AM ; BK = AC

=> 2.AM < AB + AC

Tương tự, ta có: 2.BD < AB + BC

2.CE < AC + BC

Cộng từng vế của

=> 2.(AM + BD + CE) < 2. (AB + BC + CA)

=> ÂM + BD + CÉ < AB + BC + CA

*) Chứng minh:

(AB + BC + CA) < AM + BD + CE

+) Xét tam giác AGB có: AG + GB > AB

mà AG = .AM ; BG = .BD (do G là trong tâm tam giác ABC)

.(AM + BD) > AB

+) Tương tự, ta có: 2/3

(AM + CE) > AC; 2/3

(BD + CE) > BC

=> 2/3.2. (AM + BD + CE) > AB + BC + CA

​<=> (ÂM + BD + CE) > AB + BC + CA

=> AM + BD + CE > (AB + BC + CA)

=> ĐPCM 

 

27 tháng 5 2015

A B C K G E M D

Xét tam giác ABC như hình vẽ. ta cần chứng minh: \(\frac{3}{4}\)(AB + BC + CA) < AM + BD + CE < AB + BC + CA

*) Chứng minh: AM + BD + CE < AB + BC + CA

+) Trên tia đối của tia MA lấy K sao cho MA = MK 

Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC

+) Xét  tam giác ABK có: AK < AB +BK   mà AK = 2.AM ; BK = AC

=> 2.AM < AB + AC          (1)

Tương tự, ta có: 2.BD < AB + BC  (2)

                        2.CE < AC + BC   (3)

Cộng từng vế của (1)(2)(3) => 2.(AM + BD + CE) < 2. (AB + BC + CA)

=> AM + BD + CE < AB + BC + CA

*) Chứng minh:  \(\frac{3}{4}\)(AB + BC + CA) < AM + BD + CE 

+) Xét tam giác AGB có: AG + GB > AB

mà AG = \(\frac{2}{3}\).AM ; BG = \(\frac{2}{3}\).BD (do G là trong tâm tam giác ABC)

=> \(\frac{2}{3}\).(AM + BD) > AB

+) Tương tự, ta có: \(\frac{2}{3}\)(AM + CE) > AC; \(\frac{2}{3}\)(BD + CE) > BC

=> \(\frac{2}{3}\).2. (AM + BD + CE) > AB + BC + CA

<=> \(\frac{4}{3}\) (AM + BD + CE) > AB + BC + CA

=> AM + BD + CE > \(\frac{3}{4}\)(AB + BC + CA)

=> ĐPCM

Xét tam giác ABC như hình vẽ. ta cần chứng minh:  4 3 (AB + BC + CA) < AM + BD + CE < AB + BC + CA *) Chứng minh: AM + BD + CE < AB + BC + CA +) Trên tia đối của tia MA lấy K sao cho MA = MK  Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC +) Xét  tam giác ABK có: AK < AB +BK   mà AK = 2.AM ; BK = AC => 2.AM < AB + AC          (1) Tương tự, ta có: 2.BD < AB + BC  (2)                         2.CE < AC + BC   (3) Cộng từng vế của (1)(2)(3) => 2.(AM + BD + CE) < 2. (AB + BC + CA) => AM + BD + CE < AB + BC + CA *) Chứng minh:   4 3 (AB + BC + CA) < AM + BD + CE  +) Xét tam giác AGB có: AG + GB > AB mà AG =  3 2 .AM ; BG =  3 2 .BD (do G là trong tâm tam giác ABC) =>  3 2 .(AM + BD) > AB +) Tương tự, ta có:  3 2 (AM + CE) > AC;  3 2 (BD + CE) > BC =>  3 2 .2. (AM + BD + CE) > AB + BC + CA <=>  3 4  (AM + BD + CE) > AB + BC + CA => AM + BD + CE >  4 3 (AB + BC + CA) => ĐPC

23 tháng 11 2017

Bạn vào câu hỏi tương tự khác có