Cho tam giac ABC vuông tại Anh. Trên tia BA lấy điểm M sao cho BM = BC. Phân giác của góc B cắt AC ở I , MC ở Không sao đâu. Tia MI cắt BC tại H.
a) CM: BI là trung trực của AH và AH song song và MC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHD và ΔAID có
AH=AI
góc HAD=góc IAD
AD chung
=>ΔAHD=ΔAID
=>góc HAD=góc IAD
=>AD là phân giác của góc HAC
b: ΔAHD=ΔAID
=>góc AID=góc AHD=90 độ
Xét ΔDHM vuông tại H và ΔDIC vuông tại I có
DH=DI
góc HDM=góc IDC
=>ΔDHM=ΔDIC
=>MD=MC
c: AH+HM=AM
AI+IC=AC
mà AH=AI và HM=IC
nên AM=AC
=>ΔAMC cân tại A
mà AN là trung tuyến
nên AN vuông góc MC
Xét ΔCAM có
AN,MI,CH là đường cao
=>AN,MI,CH đồng quy
=>AN,MI,BC đồng quy
a: Xet ΔBAM có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAM cân tại B
=>BA=BM
b: góc BAO+góc CAO=90 độ
góc BOA+góc OAH=90 độ
mà góc CAO=góc OAH
nên góc BAO=góc BOA
nên ΔBAO cân tại B
=>BA=BO=BM
=>BO=BM
Xét ΔBAC và ΔBMC có
BA=BM
góc ABC=góc MBC
BC chung
=>ΔBAC=ΔBMC
=>góc BMC=90 độ
=>OK vuông góc BM
góc KOM+góc BOK=góc BOM
góc KMO+góc BMH=góc BMO
mà góc BOK=góc BMH; góc BOM=góc BMO
nên góc KOM=góc KMO
=>ΔKMO cân tại K
a: Ta có: ΔBMC cân tại B
mà BK là đường phân giác
nên BK là đường cao
Xét ΔBMC có
CA là đường cao
BK là đường cao
CA cắt BK tại I
Do đó: I là trực tâm
=>MH vuông góc với BC
Xét ΔBHM vuông tại H và ΔBAC vuông tại A có
BM=BC
góc HBM chung
DO đó: ΔBHM=ΔBAC
Suy ra: BH=BA
Xét ΔBAI vuông tại A và ΔBHI vuông tại H có
BA=BH
BI chung
Do đó: ΔBAI=ΔBHI
Suy ra: IA=IH
=>BI là đường trung trực của AH
b: Xét ΔBMC có BA/BM=BH/BC
nên AH//MC
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK
a/ Xét T/g ABH và T/g ACH ta có :
+ AB = AC ( T/g ABC cân tại A )
+ BH = CH ( H là trung điểm BC )
+ Góc ABH = ACH ( T/g ABC cân tại A )
=> T/g ABH = T/g ACH (C.g.c)
b/Xét T/g ABM và T/g ACM ta có
+ Ab = Ac ( T/g ABC cân tại A )
+ AM chung
+ BAM = CAM ( T/g ABH = T/g ACH )
=> T/g ABM = T/g ACM (C.g.c)
- Ta có :
BM = CM ( T/g ABM = T/g ACM)
=> T/g MBC cân tại M
a) Xét \(\Delta ABH\)và \(\Delta ACH\)có:
\(AB=AC\)(gt)
\(\widehat{ABH}=\widehat{ACH}\)(gt)
\(BH=CH\)(gt)
suy ra: \(\Delta ABH=\Delta ACH\)(c.g.c)
hình bn tự vẽ nhé
\(+\)ta có: \(MB=BC\)nên \(\Delta BMC\)Cân tại B \(\Rightarrow\) đường phân giác BK cũng là đường cao \(\Delta BMC\) hay \(BK\perp MC\)
Mà \(CA\perp BM\). Do đó I là trọng tâm \(\Delta BMC\)\(\Rightarrow MH\perp BC\)
Xét tam giác AMC vuông tại A và tam giác HCM vuông tại H có:
MC lá cạnh chung
\(\widehat{AMC}=\widehat{HCM}\)(\(\Delta BMC\)cân tại B )
Nên \(\Delta AMC=\Delta HCM\)(CẠNH HUYỀN - GÓC NHỌN)
Suy ra AM = HC \(\Rightarrow MB-AM=BC-HC\)hay AB = BH
gọi O là giao điểm AH và BI
Xét \(\Delta AOB\)và \(\Delta HOB\)CÓ: AB = BH ( chứng minh trên)
\(\widehat{ABO}=\widehat{OBH}\)( BI là tia phân giác góc ABC )
BO là cạnh chung
Nên \(\Delta AOB=\Delta HOB\)(c.g.c) do đó: \(\widehat{AOB}=\widehat{HOB}\)
Mà \(\widehat{AOB}+\widehat{HOB}=180^O\)\(\Rightarrow\widehat{AOB}=\widehat{HOB}=90\)HAY \(BI\perp AH\)
Mặt khác: OA = OH ( \(\Delta AOB=\Delta HOB\)) \(\Rightarrow\)BI là tug trực AH (dpcm)
\(+\)Ta có: \(BI\perp AH\); \(BI\perp MC\) \(\Rightarrow\)AH sog sog vs MC (dpcm)