S=2/2^1+3/2^2+...+2017/2^2016
Chứng minh S <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số từ $2^2,2^3,...,2^{2017}$ đều là số chẵn nên $2^2+2^3+...+2^{2017}$ chẵn.
Mà $1$ lẻ nên $S=1+2^2+2^3+...+2^{2017}$ lẻ nên $S$ không chia hết cho $4$
Ta có :
\(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2016}+\left(\frac{1}{2}\right)^{2017}\)
\(2S=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2015}+\left(\frac{1}{2}\right)^{2016}\)
\(2S-S=\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2015}+\left(\frac{1}{2}\right)^{2016}\right]-\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2016}+\left(\frac{1}{2}\right)^{2017}\right]\)
\(S=1-\left(\frac{1}{2}\right)^{2017}< 1\)
S1 = 1-2+3-4+....+2017-2018
= (-1)+(-1)+....+(-1)
= (-1) x 1009
= -1009
\(S=1+2+...+2^{2017}\)
\(2S=2+2^2+...+2^{2018}\)
\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)
\(S=2^{2018}-1\)
\(S=3+3^2+...+3^{2017}\)
\(3S=3^2+3^3+...+3^{2018}\)
\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)
\(2S=3^{2018}-3\)
\(S=\dfrac{3^{2018}-3}{2}\)
\(S=4+4^2+...+4^{2017}\)
\(4S=4^2+4^3+...+4^{2018}\)
\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)
\(3S=4^{2018}-4\)
\(S=\dfrac{4^{2018}-4}{3}\)
\(S=5+5^2+...+5^{2017}\)
\(5S=5^2+5^3+...+5^{2018}\)
\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)
\(4S=5^{2018}-5\)
\(S=\dfrac{5^{2018}-5}{4}\)
a) S=1+2+22+...+22017
=> 2S=2.(1+2+22+...+22017)
=>2S=2+22+23+...+22018
=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )
=> S =22018-1
\(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{2017}\)
\(\Rightarrow2S=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+......+\left(\frac{1}{2}\right)^{2016}\)
\(\Rightarrow2S-S=1-\left(\frac{1}{2}\right)^{2017}\)
\(\Rightarrow S=1-\left(\frac{1}{2}\right)^{2017}< 1\left(đpcm\right)\)
Trừ 1 đi thì ta chỉ cần chứng minh từ \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}\) \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\) \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\) ....... cứ nhu vậy cho đến \(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vì \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy S < 2