Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=7+7^2+..+7^2017
7S=7^2+..+7^2018
(7s-s)=6s
=7^2018-7
\(S=\frac{7^{2018}-7}{6}\)
Tìm số tận cùng của 72018
\(7^{2018}=7^{2.1009}=49^{1009}=49.49^{1008}=49.\left(...1\right)^{504}\Rightarrow tancung=9\)=> 72018-7 có tận cùng =2
=> S có tận cùng là :(12/6= 2) hoạc (42/6=7)
S có 2017 số hạng => S là một số lẻ
=> S có tạn cùng =7
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=> \(S=\frac{3^{2018}-3}{2}\)
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=> \(S=\frac{4^{2018}-4}{3}\)
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=>
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=>
S = (2 +2019) + [(-3) + (-2018)] + ... + 1010 + 1011
S = 1 + (-1) + (-1) +... + 2021
S = 0 + 2021
S = 2021
S=2+(-3)+4+(-5)+......+2015+(-2016)+2017+(-2018)+2019 ( có 2019 số hạng )
S = - 1 + ( - 1 ) + ............ + ( - 1 ) + 2019 ( có 1009 số - 1 )
S = - 1 . 1009 + 2019
S = - 1009 + 2019
S = 1010
\(S=1+2+2^2+...+2^{2017}\)
\(2S=2+2^2+2^3+...+2^{2018}\)
\(S=2^{2018}-1\)
\(S=3+3^2+3^3+...+3^{2017}\)
\(3S=3^2+3^3+3^4+...+3^{2018}\)
\(2S=3^{2018}-1\)
\(S=\frac{3^{2018}-1}{2}\)
2 cái còn lại tương tự
S= 1 + 2 + 22 + 23 + ..........+ 22017
2S = 2 + 22 + 23 + 24..........+ 22017 + 22018
Trừ hai vế ta được :
S = 1 + 22018
Vậy S= 1 + 22018
S= 3 + 32 + 33 + ..........+ 32017
3S= 32 + 33 + 34..........+ 32017 + 32018 + 32019 + 32020
Trừ hai vế đi ta được:
S= 3 + 32018 + 32019 + 32020
S= 36057
Các phần sao làm tương tự
1,
\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{2017}+1\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2018}{2017}\)
\(=\frac{2018}{2}=1009\)
2,
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2018}-1\right)\)
\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-2017}{2018}\)
\(=\frac{-1\cdot2017}{2018}=\frac{-2017}{2018}\)
S1 = 1-2+3-4+....+2017-2018
= (-1)+(-1)+....+(-1)
= (-1) x 1009
= -1009
\(a)\) \(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(2S-S=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(S=2^{2018}-1\)
\(b)\) \(S=3+3^2+3^3+...+3^{2017}\)
\(3S=3^2+3^3+3^4+...+3^{2018}\)
\(3S-S=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)
\(2S=3^{2018}-3\)
\(S=\frac{3^{2018}-3}{2}\)
\(c)\) \(S=4+4^2+4^3+...+4^{2017}\)
\(4S=4^2+4^3+4^4+...+4^{2018}\)
\(4S-S=\left(4^2+4^3+4^4+...+4^{2018}\right)-\left(4+4^2+4^3+...+4^{2017}\right)\)
\(3S=4^{2018}-4\)
\(S=\frac{4^{2018}-4}{3}\)
\(d)\) \(S=5+5^2+5^3+...+5^{2017}\)
\(5S=5^2+5^3+5^4+...+5^{2018}\)
\(5S-S=\left(5^2+5^3+5^4+...+5^{2018}\right)-\left(5+5^2+5^3+...+5^{2017}\right)\)
\(4S=5^{2018}-5\)
\(S=\frac{5^{2018}-5}{2}\)
Chúc em học tốt ~
\(S=1+2+...+2^{2017}\)
\(2S=2+2^2+...+2^{2018}\)
\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)
\(S=2^{2018}-1\)
\(S=3+3^2+...+3^{2017}\)
\(3S=3^2+3^3+...+3^{2018}\)
\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)
\(2S=3^{2018}-3\)
\(S=\dfrac{3^{2018}-3}{2}\)
\(S=4+4^2+...+4^{2017}\)
\(4S=4^2+4^3+...+4^{2018}\)
\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)
\(3S=4^{2018}-4\)
\(S=\dfrac{4^{2018}-4}{3}\)
\(S=5+5^2+...+5^{2017}\)
\(5S=5^2+5^3+...+5^{2018}\)
\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)
\(4S=5^{2018}-5\)
\(S=\dfrac{5^{2018}-5}{4}\)
a) S=1+2+22+...+22017
=> 2S=2.(1+2+22+...+22017)
=>2S=2+22+23+...+22018
=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )
=> S =22018-1