Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+...+2^{2017}\)
\(2S=2+2^2+...+2^{2018}\)
\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)
\(S=2^{2018}-1\)
\(S=3+3^2+...+3^{2017}\)
\(3S=3^2+3^3+...+3^{2018}\)
\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)
\(2S=3^{2018}-3\)
\(S=\dfrac{3^{2018}-3}{2}\)
\(S=4+4^2+...+4^{2017}\)
\(4S=4^2+4^3+...+4^{2018}\)
\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)
\(3S=4^{2018}-4\)
\(S=\dfrac{4^{2018}-4}{3}\)
\(S=5+5^2+...+5^{2017}\)
\(5S=5^2+5^3+...+5^{2018}\)
\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)
\(4S=5^{2018}-5\)
\(S=\dfrac{5^{2018}-5}{4}\)
a) S=1+2+22+...+22017
=> 2S=2.(1+2+22+...+22017)
=>2S=2+22+23+...+22018
=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )
=> S =22018-1
\(S=1+2+2^2+...+2^{2017}\)
\(2S=2+2^2+2^3+...+2^{2018}\)
\(S=2^{2018}-1\)
\(S=3+3^2+3^3+...+3^{2017}\)
\(3S=3^2+3^3+3^4+...+3^{2018}\)
\(2S=3^{2018}-1\)
\(S=\frac{3^{2018}-1}{2}\)
2 cái còn lại tương tự
S= 1 + 2 + 22 + 23 + ..........+ 22017
2S = 2 + 22 + 23 + 24..........+ 22017 + 22018
Trừ hai vế ta được :
S = 1 + 22018
Vậy S= 1 + 22018
S= 3 + 32 + 33 + ..........+ 32017
3S= 32 + 33 + 34..........+ 32017 + 32018 + 32019 + 32020
Trừ hai vế đi ta được:
S= 3 + 32018 + 32019 + 32020
S= 36057
Các phần sao làm tương tự
a, \(S_1=3+4+6+8+...+2016+2017\)
\(S_1=3+\left(4+6+8+...+2016\right)+2017\)
Số số hạng của (4 + 6 + 8 + ... + 2016) là:
\(\left(2016-4\right)\div2+1=1007\)
Tổng của (4 + 6 + 8+ ... + 2016) là:
\(\frac{\left(4+2016\right).1007}{2}=1017070\)
\(\Rightarrow S_1=3+4+6+8+..+2016+2017=3+1017070+2017=1019090\)
b, \(S_2=2+3+5+7+...+2017+2018\)
\(S_2=2+\left(3+5+7+...+2017\right)+2018\)
Số số hạng của (3 + 5 + 7 + ... + 2017) là:
\(\frac{2017-3}{2}+1=1008\)
Tổng của (3 + 5 + 7 + ... + 2017) là:
\(\frac{\left(3+2017\right).1008}{2}=1018080\)
\(\Rightarrow S_2=2+3+5+7+...+2017+2018=2+1018080+2018=1020100\)
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=> \(S=\frac{3^{2018}-3}{2}\)
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=> \(S=\frac{4^{2018}-4}{3}\)
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=>
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=>
a) Các số có dạng : \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a}-\)\(\frac{1}{a+1}\)
Thế vào bởi các số sẽ có kết quả
b) Các số có dạng : \(\frac{1}{a\left(a+2\right)}=\frac{1}{2}.\frac{2}{a\left(a+2\right)}=\frac{1}{2}.\frac{\left(a+2\right)-a}{a\left(a+2\right)}\)\(=\frac{1}{2}.\left(\frac{1}{a}-\frac{1}{a+2}\right)\)
Làm tương tự trên
c) Lấy nhân tử chung là 5 rồi làm như câu a)
\(\frac{0,5+\frac{2}{43}-\frac{2}{2017}}{\frac{3}{4}+\frac{3}{43}-\frac{3}{2017}}:\frac{\frac{4}{91}+\frac{4}{34}+\frac{4}{2017}}{\frac{5}{91}+\frac{5}{34}+\frac{5}{2017}}\)
\(=\frac{\frac{2}{4}+\frac{2}{43}-\frac{2}{2017}}{\frac{3}{4}+\frac{3}{43}-\frac{3}{2017}}:\frac{4\left(\frac{1}{91}+\frac{1}{34}+\frac{1}{2017}\right)}{5\left(\frac{1}{91}+\frac{1}{34}+\frac{1}{2017}\right)}\)
\(=\frac{2\left(\frac{1}{4}+\frac{1}{43}-\frac{1}{2017}\right)}{3\left(\frac{1}{4}+\frac{1}{43}-\frac{1}{2017}\right)}:\frac{4}{5}\)
\(=\frac{2}{3}.\frac{5}{4}=\frac{5}{6}\)
\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)
\(B=\dfrac{2\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)
\(B=\dfrac{2}{3}:\dfrac{4}{5}\) ( Do \(\left\{{}\begin{matrix}1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\ne0\\1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\ne0\end{matrix}\right.\))
\(B=\dfrac{2}{3}\cdot\dfrac{5}{4}=\dfrac{2\cdot5}{3\cdot4}=\dfrac{5}{6}\)
\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)
\(\Rightarrow\)\(B=\dfrac{2-\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)
\(\Rightarrow B=\dfrac{2}{3}:\dfrac{4}{5}=\dfrac{10}{12}=\dfrac{5}{6}\)
\(a)\) \(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(2S-S=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(S=2^{2018}-1\)
\(b)\) \(S=3+3^2+3^3+...+3^{2017}\)
\(3S=3^2+3^3+3^4+...+3^{2018}\)
\(3S-S=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)
\(2S=3^{2018}-3\)
\(S=\frac{3^{2018}-3}{2}\)
\(c)\) \(S=4+4^2+4^3+...+4^{2017}\)
\(4S=4^2+4^3+4^4+...+4^{2018}\)
\(4S-S=\left(4^2+4^3+4^4+...+4^{2018}\right)-\left(4+4^2+4^3+...+4^{2017}\right)\)
\(3S=4^{2018}-4\)
\(S=\frac{4^{2018}-4}{3}\)
\(d)\) \(S=5+5^2+5^3+...+5^{2017}\)
\(5S=5^2+5^3+5^4+...+5^{2018}\)
\(5S-S=\left(5^2+5^3+5^4+...+5^{2018}\right)-\left(5+5^2+5^3+...+5^{2017}\right)\)
\(4S=5^{2018}-5\)
\(S=\frac{5^{2018}-5}{2}\)
Chúc em học tốt ~
Tks anh ạ