Cho tam giacs ABC vuông tại A. Một đường thằng song song với BC lần lượt cắt AB và AC tại D và E a, CMR CB^2 - CD^2 = EB^2 - ED^2 b, hãy xác định điểm D thỏa mãn DC ^2 =BC. DE đang cần câu b gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn áp dụng định lí pitago vào.
\(CD^2-CB^2=\left(AC^2+AD^2\right)-\left(AB^2+AC^2\right)=AD^2-AB^2\)
\(ED^2-EB^2=\left(AD^2+AE^2\right)-\left(AB^2+AE^2\right)=AD^2-AB^2\)
Vậy \(CD^2-CB^2=ED^2-EB^2\)
a: Xét tứ giác ABMC có
E là trung điểm chung của AM và BC
góc BAC=90 độ
Do đó: ABMC là hình chữ nhật
b: Xét ΔBAC có BD/BA=BE/BC
nên DE//AC
=>EN//AC
Xét tứ giác ANEC có
AN//EC
AC//NE
=>ANEC là hình bình hành
Vì AB//DE ⇒BADˆ=ADEˆ⇒BAD^=ADE^(so le trong)
mà BADˆ=DAEˆBAD^=DAE^(gt) ⇒DAEˆ=ADEˆ⇒DAE^=ADE^ hay ΔAEDΔAED cân tại E⇒AE=ED⇒AE=ED(1)
b)
Xét ΔKEBΔKEB và ΔDBEΔDBE có:
KBEˆ=BEDˆKBE^=BED^(BA//BE)
BE cạnh chung
KEBˆ=EBDˆKEB^=EBD^(KE//BC)
⇒ΔKEB=ΔDBE⇒ΔKEB=ΔDBE(G-C-G)
⇒BK=DE⇒BK=DE(2)
Từ (1) và (2) ⇒BK=AE
P/s:~Hok tốt~
3:
Xét tứ giác AEHF có
góc AEH=góc AFH=góc EAF=90 độ
=>AEHF là hình chữ nhật
AM vuông góc EF
=>góc MAC+góc AFE=90 độ
=>góc MAC+góc AHE=90 độ
=>góc MAC+góc B=90 độ
mà góc MCA+góc B=90 độ
nên góc MAC=góc MCA
=>MA=MC
góc MAC+góc MAB=90 độ
góc MCA+góc MBA=90 độ
mà góc MAC=góc MCA
nên góc MAB=góc MBA
=>MA=MB
=>MB=MC
=>M là trung điểm của BC