K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

a) Xét tam giác ABC và tam giác HBA có:

\(\widehat{BAC}=\widehat{BHA}=90^o\)

Góc B chung

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right)\)

b) 

Xét tam giác ABC và tam giác HAC có:

\(\widehat{BAC}=\widehat{AHC}=90^o\)

Góc C chung

\(\Rightarrow\Delta ABC\sim\Delta HAC\left(g-g\right)\)

c) Từ câu a và b ta có : \(\Delta HBA\sim\Delta HAC\)

\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Rightarrow HA^2=HB.HC=9.16=144\)

\(\Rightarrow HA=12\left(cm\right)\)

Khi đó áp dụng định lý Pi-ta-go ta có:

\(AB^2=BH^2+AH^2=9^2+12^2\Rightarrow AB=15\left(cm\right)\)

\(AC^2=CH^2+AH^2=16^2+12^2\Rightarrow AC=20\left(cm\right)\)

BC = BH + HC = 9 + 16 = 25 (cm)

Áp dụng tính chất tia phân giác trong tam giác ta có:

\(\frac{AE}{EC}=\frac{AB}{BC}=\frac{15}{25}=\frac{3}{5}\)

\(\Rightarrow AE=\frac{3}{8}\times20=7,5\left(cm\right)\)

\(\Rightarrow EC=20-7,5=12,5\left(cm\right)\)

a) Xét ΔBAH vuông tại H và ΔBCA vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔBAH\(\sim\)ΔBCA(g-g)

a: Xét ΔABC vuông tai A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{8^2+15^2}=17\left(cm\right)\)

AH=8*15/17=120/17(cm)

c: AM*AB=AH^2

AN*AC=AH^2

=>AM*AB=AN*AC

loading...  loading...  

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\)

hay AH=12(cm)

Vậy: AH=12cm

15 tháng 3 2021
answer-reply-image lời giải đây nhé e ❤️. tham khảo nhé! 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA

=>BH/AB=BC/BA(1)

hay \(AB^2=BH\cdot BC\)

Câu b đề sai rồi bạn

26 tháng 2 2022

Cảm ơn bạn nhiều. Giải mình câu C nhé. Cảm ơn bạn

 

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{CBA}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)