K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Với [x>1x<−1] ta có: x^3< x^3+2x^2+3x+2<(x+1)^3⇒x^3<y^3<(x+1)^3 (không xảy ra)
Từ đây suy ra −1≤ x ≤1
Mà x ∈ Z ⇒x ∈ {−1;0;1}
∙∙ Với x=−1⇒y=0
∙∙ Với x=0⇒y= căn bậc 3 của 2 (không thỏa mãn)
∙∙ Với x=1 ⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2)

4 tháng 10 2020

Xét \(2x^2+3x+2=2\left(x^2+\frac{3}{4}\right)^2+\frac{7}{16}>0\forall x\)

\(\Rightarrow x^3< y^3\left(1\right)\)

Giả sử:\(y^3< \left(x+2\right)^3\)

\(\Leftrightarrow x^3+2x^2+3x+2< x^3+6x^2+12x+8\)

\(\Leftrightarrow-4x^2-9x-6< 0\)

Mai lm tiếp

9 tháng 8 2023

Đáp án:

 

Giải thích các bước giải:

Ta có:

2x2+3x+22�2+3�+2

=2(x2+32x+1)=2(�2+32�+1)

=2(x2+2.x.34+916+716)=2(�2+2.�.34+916+716)

=2[(x+34)2+716]=2[(�+34)2+716]

=2(x+34)2+78=2(�+34)2+78

Nhận xét:

2(x+34)202(�+34)2≥0 x

2(x+34)2+78>0⇒2(�+34)2+78>0 x

Mà x3+2x2+3x+2=y3�3+2�2+3�+2=�3

Nên: x3<y3�3<�3

Giả sử: y3<(x+2)3�3<(�+2)3

x3+2x2+3x+2<x3+6x2+12x+8⇔�3+2�2+3�+2<�3+6�2+12�+8

4x29x6<0⇔-4�2-9�-6<0

(4x2+9x+6)<0⇔-(4�2+9�+6)<0

4x2+9x+6>0⇔4�2+9�+6>0

4(x2+94x+8164)+1516>0⇔4(�2+94�+8164)+1516>0

4(x2+2.x.98+8164)+1516>0⇔4(�2+2.�.98+8164)+1516>0

4(x+98)2+1516>0⇔4(�+98)2+1516>0 (luôn đúng)

Vậy điều giả sử đúng hay y3<(x+2)3�3<(�+2)3

Mà: x3<y3�3<�3

Nên: x3<y3<(x+2)3�3<�3<(�+2)3

Mà y3�3 là lập phương của 11 số nguyên, giữa x3�3 và (x+2)3(�+2)3 chỉ có duy nhất 11 lập phương của số nguyên là (x+1)3(�+1)3

Nên: y3=(x+1)3�3=(�+1)3

x3+2x2+3x+2=x3+3x2+3x+1⇔�3+2�2+3�+2=�3+3�2+3�+1

x2+1=0⇔-�2+1=0

1x2=0⇔1-�2=0

(1x)(1+x)=0⇔(1-�)(1+�)=0

 [1x=01+x=0[1−�=01+�=0

 [x=1x=1[�=1�=−1

+)x=1+)�=1 thì y3=1+2+3+2=8�3=1+2+3+2=8

<=> y=2`

+)x=1+)�=-1 thì y3=1+23+2=0�3=-1+2-3+2=0

y=0⇔�=0

Vậy (x,y)=(1,2);(1,0)

9 tháng 8 2023

\(x^3+2x^2+3x+2=y^3\left(1\right)\)

- Nếu \(x=0\Leftrightarrow y^3=2\) không tồn tại y nguyên

- Nếu \(x\ne0\Rightarrow x^2\ge1\Rightarrow x^2-1\ge0\)

\(\left(1\right)\Leftrightarrow y^3=x^3+2x^2+3x+2\)

\(\Leftrightarrow y^3=x^3+3x^2+3x+1-\left(x^2-1\right)\)

\(\Leftrightarrow y^3=\left(x+1\right)^3-\left(x^2-1\right)\le\left(x+1\right)^3\left(2\right)\)

Ta lại có 

\(y^3=x^3+2x^2+3x+2=x^3+\left[2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+2-\dfrac{9}{8}\right]\)

\(\Rightarrow y^3=x^3+\left[2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{8}\right]\)

mà \(\left[2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{8}\right]>0\)

\(\Rightarrow y^3< x^3\left(3\right)\)

\(\left(2\right),\left(3\right)\Rightarrow x^3< y^3\le\left(x+1\right)^3\)

\(\Rightarrow y^3=\left(x+1\right)^3\)

\(\left(2\right)\Rightarrow x^2-1=0\)

\(\Rightarrow x^2=1\)

\(\Rightarrow x=1;x=-1\)

Nếu \(x=-1\Rightarrow y=0\)

Nếu \(x=1\Rightarrow y=2\)

Vậy \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(1;2\right)\right\}\) thỏa mãn đề bài

21 tháng 11 2015


Với [x>1x<−1] ta có: x3<x3+2x2+3x+2<(x+1)3⇒x3<y3<(x+1)3 (không xảy ra)
Từ đây suy ra −1≤x≤1
Mà x∈Z⇒x∈{−1;0;1}
∙ Với x=−1⇒y=0
∙ Với x=0⇒y=2√3 (không thỏa mãn)
∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2) 

  • Oral1020, DarkBlood, trandaiduongbg và 1 người khác yêu thích
7 tháng 1 2019

x=-1,y=0

19 tháng 6 2019

1.Tìm x , biết

.2x -1/2-1/6-1/12-...- 1/49*50=7-1/50+x

=> 2x- ( 1/2+1/6+1/12+...1/ 49.50 )= 7-1/50+x

=> 2x -( 1/1.2 + 1/2.3+1/3.4+...+1/49.50)= 7-1/50+x

=> 2x - ( 1- 1/2+ 1/2-1/3+1/3-1/4+...+1/49-1/50) = 7-1/50 + x

=> 2x - ( 1-1/50) =7-1/50 + x

=> 2x- 1+ 1/50=7-1/50+ x

=> 1+1/50= 2x- (7 - 1/50+ x)

=> 1+1/50 = 2x- 7 + 1/50- x

=> 1+1/50 = x + 1/50 - 7

=> 1 = x + 1/50 - 7 - 1/50

=> 1 = x - 7

=> x = 8 

Vậy...

Tham khảo thêm:Câu hỏi của Cừu beta - Toán lớp 7 - Học toán với OnlineMath

19 tháng 6 2019

LinkCâu hỏi của Cừu beta - Toán lớp 7 - Học toán với OnlineMath