tìm số nguyên x biết |x+1|+|x+2|+......+|x+100|=101x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x > 0
ta có
x + 1/101 + x + 2/101 + ... + x + 100/ 101 = 101x
=> 100x + ( 1 + 2 + 3 + ... + 100)/101 = 101x
=> 5050/101 = 101 x - 100x
=> x = 50
x < 0 ta có :
-x - 1/101 - x - 2/101 - ... - x - 100/101 = 101x
=> - 100x - ( 1 + 2 + .. + 100)/101 = 101x
=> 5050/101 = -100x - 101x
=> 50 = -201x
=> x =
thang Tran trả lời sai, x chỉ có thể lớn hơn 0 thôi, ta có : VT= |x+1/101|+|x+2/101|+|x+3/101|+...+|x+100/101| >= 0
Mà VT=VP =)) VP= 101x >= (lớn hơn hoặc bằng) 0 mà 101 >= 0 =)) x >= 0
<sau đó mới làm giống TH x>0 của bn í>
SAi vậy mà bn vẫn ak???
a, f(x)=( x - 100 )( x5 - x4 + x3 - x2 + x ) - x + 25
=>f(100) = - 75
|x + 1| + |x + 2| + ... + |x + 100| = 101x
có |x + 1| > 0; |x + 2| > 0;...; |x + 100| > 0
=> 101x > 0
=> x > 0
ta có : x + 1 + x + 2 + ... + x + 100 = 101x
=> 100x + (1 + 2 + ... + 100) = 101x
=> x = 5050
ta có
/x+1/> hoặc = 0
.........
/x+100/> hoặc = 0
Vì vậy /x+1/+/x+2/+...+/x+100/=x+1+x+2+...+x+100=100x+5050
Lại có /x+1/+/x+2/+..+/x+100/= 101x
nên 100x+5050=10x
suy ra x=5050
Vì \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\forall x\)
\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\forall x\)
\(\Rightarrow101x\ge0\)
\(\Rightarrow x\ge0\)
Từ điều kiện trên ta có :
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(100x+\frac{1+2+...+100}{101}=101x\)
\(101x-100x=\frac{5050}{101}\)
\(x=50\)
Vậy x = 50
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+....+\left|x+\frac{100}{101}\right|=101x\)
\(KĐ:101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
\(x+\frac{1}{101}+x+\frac{2}{101}+....+x+\frac{100}{101}=101x\)
\(100x+\left(\frac{1}{101}+\frac{2}{101}+....+\frac{100}{101}\right)=101x\)
\(\Rightarrow101-100x=\frac{1+2+....+100}{101}\)
\(x=\frac{\left(1+100\right)\left(100-1+1\right):2}{101}\)
\(x=\frac{101.100:2}{101}\)
\(x=50\)
1) f(x)=1008 - (100+1)*1007 + (100+1)*1006 - .........- (100+1)100+125
=1008 - 1008 - 1007+1007 + 1006 - ......-1002 - 100+125
=25
Câu 2:
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
Có \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)
do đó phương trình ban đầu tương đương với:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Leftrightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)
\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)
Là 50 bạn nha!
vì \(VT\ge0\Rightarrow VP\ge0\)
\(\Rightarrow x\ge0\)
\(\Leftrightarrow\left|x+1\right|+\left|x+2\right|+...+\left|x+100\right|=101x\)
\(\Leftrightarrow x+1+x+2+..+x+100=101x\)
\(\Leftrightarrow100x+\left(1+2+3+...+100\right)=101x\)
\(\Leftrightarrow100x-101x=5050\)
\(\Leftrightarrow-x=5050\Rightarrow x=5050\left(ktm\right)\)