cho: a/b=b/c=c/d chứng minh(a+b+c/b+c+d)=a/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\)
\(\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{t}{t+1},\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{t}{t+1}\)
suy ra đpcm.
\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b}{d},\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b}{d}\)
suy ra đpcm.
B) \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-\left(a+c\right)}{\left(b+3d\right)-\left(b+d\right)}=\frac{2c}{2d}=\frac{c}{d}\)
\(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-3\left(a+c\right)}{\left(b+3d\right)-3\left(b+d\right)}=\frac{-2a}{-2b}=\frac{a}{b}\)
suy ra đpcm.
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
<=> \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)
<=> \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c=1
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)
<=> \(a^2-ab+b^2-bc+c^2-ac=0\)
<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c
#NguyễnHoàngTiến ơi cảm ơn bạn đã giúp mình nhưng cho mình hỏi left với right trong bài của bạn có nghĩa là gì vậy hả, mình không hiểu lắm.
Do a/b=c/d ⇔ ad=bc
1) Ta có: (a+c)b=ab+bc
(b+d)a=ab+ad
Do bc=ad nên ab+ad=ab+bc
Suy ra (a+c)b=(b+d)a (đpcm)
2) Ta có: (b+d)c=bc+dc
(a+c)d=ad+cd
Do bc=ad nên bc+dc=ad+cd
Suy ra (b+d)c=(b+d)c (đpcm)
3)Ta có:(a+b)(c-d)=ac-ad+bc-bd=(ac-bd)-(ad-bc)
(a-b)(c+d)=ac+ad-bc-bd=(ac-bd)+(ad-bc)
Do ad=bc ⇔ ad-bc=0 nên (ac-bd)-(ad-bc)=(ac-bd)+(ad-bc)
⇔(a+b)(c-d)= (a-b)(c+d) (đpcm)
a, Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
b, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
Đặt k = \(\frac{a}{b}=\frac{c}{d}\)
Từ k = \(\frac{a}{b}\)ta được b = a . k
k = \(\frac{c}{d}\)ta được d= c. k
a)Ta có
\(\frac{a+c}{b+d}=\frac{b.k+d.k}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)( 1)
\(\frac{a-c}{b-d}=\frac{b.k-d.k}{b-d}=\frac{k.\left(b+k\right)}{b+k}=k\)(2)
Từ (1) và (2) ta được \(\frac{a+c}{b+d}=\frac{a-c}{b+d}\)
b)Ta có
\(\frac{a-b}{a+b}=\frac{b\cdot k-b}{b.k+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\)(1)
\(\frac{c-d}{c+d}=\frac{d.k-d}{d.k+d}=\frac{d.\left(k-1\right)}{d\left(k+1\right)}=\frac{k-1}{k+1}\)(2)
Từ (1)và (2) ta được \(\frac{a-b}{a+c}=\frac{c-d}{c+d}\)
Chúc bạn học giỏi !!
Mình nghĩ cái đề như này :
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\). Chứng minh : \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Giải
Ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
Do đó :
\(\frac{a}{b}=\frac{a+b+c}{b+c+d}\)\(\Rightarrow\)\(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\) \(\left(1\right)\)
Lại có :
\(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}\)
Do \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) nên \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\) ( đpcm )
Vậy nếu \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) thì \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Chúc bạn học tốt ~
mk ghi sai đề: cho ab=b/c/c/d chứng minh (a+b+c/b+c+d)^3=a/d