K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2021
Cậu xem lại đề đi
12 tháng 6 2021

mình xem rùi ra kết quả ko tính được nên mới hỏi

31 tháng 12 2021

b: \(=\dfrac{x^4-x^3-2x^3+2x^2+x^2-x}{x-1}=x^3-2x^2+x\)

25 tháng 7 2023

Đề yêu cầu gì em?

25 tháng 7 2023

 

\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)

\(x^2-7x+12=\left(x-2\right)\left(x-5\right)\)

\(x^2+x-12=\left(x-5\right)\left(x+6\right)\)

\(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)

\(\Leftrightarrow\dfrac{3x-1}{\left(6x-7\right)\left(3x+4\right)}-\dfrac{4x}{\left(8x-3\right)\left(3x+4\right)}=\dfrac{3}{\left(8x-3\right)\left(6x-7\right)}\)

=>(3x-1)(8x-3)-4x(6x-7)=3(3x+4)

=>24x^2-9x-8x+3-24x^2+28x=9x+12

=>11x+3=9x+12

=>2x=9

=>x=9/2

16 tháng 9 2021

1) \(\left(x+1\right)\left(x+2\right)-3x\left(x-4\right)=x^2+3x+2-3x^2+12x=-2x^2+15x+2\)

2) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)\)

\(\Leftrightarrow3x^2-10x+8=3x^2-27x\)

\(\Leftrightarrow17x=-8\Leftrightarrow x=-\dfrac{8}{17}\)

3) \(-3\left(x-4\right)\left(x-2\right)-x^2\left(-3x+18\right)+24x-25\)

\(=-3x^3+6x^2+12x^2-24x+3x^3-18x^2+24x-25=-25\)

16 tháng 9 2021

Cảm ơn bạn rất nhiều.

 

24 tháng 1 2016

x1=\(-\frac{1}{3}\)         x2=\(\frac{1}{2}\)            x3=\(\frac{1}{4}\)

26 tháng 1 2016

cach lam the nao

 

3 tháng 6 2019

\(3x^3+11x^2-3x+7-24x\sqrt{8x-1}+3\sqrt{8x-1}=0\)

Nhận thấy x = 0 không là nghiệm của pt

\(\Leftrightarrow3x^2+11x-3+\frac{7}{x}-24\sqrt{8x-1}+\frac{3}{x}\sqrt{8x-1}=0\)

Đặt \(\frac{1}{x}=t\)

\(\Leftrightarrow3x^2+11x-\left(3-7t+3t\left(\frac{8}{t}-1\right)\sqrt{\frac{8}{t}-1}\right)=0\)

Coi t là tham số mà tính nghiệm

NV
19 tháng 4 2019

ĐKXĐ: \(x\ge\frac{1}{8}\)

\(3x^3+9x^2+9x+3+2x^2-12x+4-3\sqrt{8x-1}\left(8x-1\right)=0\)

\(\Leftrightarrow3\left(x+1\right)^3+2x^2+4x+2-16x+2-3\sqrt{\left(8x-1\right)^3}=0\)

\(\Leftrightarrow3\left(x+1\right)^3+2\left(x+1\right)^2-3\sqrt{\left(8x-1\right)^3}-2\left(8x-1\right)=0\)

Đặt \(\left\{{}\begin{matrix}x+1=a>0\\\sqrt{8x-1}=b\ge0\end{matrix}\right.\) phương trình trở thành:

\(3a^3+2a^2-3b^3-2b^2=0\)

\(\Leftrightarrow3\left(a-b\right)\left(a^2+ab+b^2\right)+2\left(a+b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(3a^2+3ab+3b^2+2a+2b\right)=0\)

\(\Leftrightarrow a-b=0\) (do \(\left\{{}\begin{matrix}a>0\\b\ge0\end{matrix}\right.\) \(\Rightarrow3a^2+3ab+3b^2+2a+2b>0\))

\(\Rightarrow a=b\Rightarrow x+1=\sqrt{8x-1}\)

\(\Leftrightarrow\left(x+1\right)^2=8x-1\)

\(\Leftrightarrow x^2-6x+2=0\Rightarrow x=3\pm\sqrt{7}\)