K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

a) \(AB=AC\Rightarrow\frac{1}{2AB}=\frac{1}{2AC}\) và tam giác ABC cân tại A 

=> Góc A = Góc B

\(\frac{1}{2AB}=\frac{1}{2AC}\Rightarrow BE=CD\)

Xét tam giác BDC và tam giác CEB có: 
B = C 
Cạnh BC chung 
BE = CD 
=> tam giác BDC= tam giác CEB (g . c . g) => BD = CE 

b. Gọi G là trọng tâm của tam giác \(ABC\Rightarrow BG=\frac{2}{3BD},CG=\frac{2}{3CD},DG=\frac{1}{3BD},EG=\frac{1}{3}CE\)

BD = CE 
=> BG = CG, DG = EG 
Góc G1 = G2 (đối đỉnh) 
=> tam giác EGB = tam giác DGC (c . g . c) 

\(\Rightarrow BE=CD\text{ hay }\frac{1}{2AB}=\frac{1}{2AC}\Rightarrow AB=AC\)

5 tháng 4 2018

a,Vì AB=AC => Tam giác ABC cân ở A => Góc ABC=ACB (1)                                                                                              Ta có:E là TĐ của AB;D là TĐ của AC                                  =>ED là đường trung bình của tam giác ABC=>ED//BC=>EDCB là hình thang (2)                             Từ (1) và (2)=>EDCB là hình thang cân =>EC=BD(đpcm)                                                                     P/S:Còn câu b bạn giải gần tương tự

19 tháng 4 2021

undefined

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

Suy ra: BD=CE(hai cạnh tương ứng)

Gọi giao của BD và CE là G

=>G là trọngtâm của ΔABC

=>BG=2/3BD; CG=2/3CE
mà BD=CE

nên GB=GC

Xét ΔEBC và ΔDCB có

BC chung

góc ECB=góc DBC

EC=DB

=>ΔEBC=ΔDCB

=>góc EBC=góc DCB

=>ΔABC cân tại A

24 tháng 6 2015

Bài 2: Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.] 
Áp dụng định lý pythagore vào tam giác vuông BGE ta có: 
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1) 
Áp dụng định lý pythagore vào tam giác vuông CGD ta có: 
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2) 

mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có: 

BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)  
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=> 
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=> 
BC = 2.(căn 5) cm

 

 

27 tháng 8 2015

Vì \(\Delta\)GDC vuông tại G nên theo định lý Py-ta-go ta có

\(DC^2=GD^2+GC^2\)(3)

Từ (1),(2) và (3) ta có 

\(BC^2=EB^2-EG^2+DC^2-GD^2=\left(\frac{AB}{2}\right)^2-EG^2+\left(\frac{AC}{2}\right)^2-GD^2\)

\(\Rightarrow BC^2=\left(\frac{6}{2}\right)^2-EG^2+\left(\frac{8}{2}\right)^2-GD^2=3^2+4^2-\left(EG^2+GD^2\right)=25-\left(EG^2+GD^2\right)\)(4)

Mà ta có ED là đường trung bình của \(\Delta ABC\) nên ta có \(ED=\frac{BC}{2}\)   (5)

Vì \(\Delta EDG\) vuông tại G nên áp dụng định lý Py-ta-go ta có 

\(ED^2=GD^2+EG^2\)  (6)

Từ (4),(5) và (6) ta có 

\(BC^2=25-ED^2=25-\left(\frac{BC}{2}\right)^2=25-\frac{BC^2}{4}=\frac{100-BC^2}{\text{4}}\)

\(\Rightarrow\text{4BC^2}=100-BC^2\)

\(\Leftrightarrow5BC^2=100\)

\(\Leftrightarrow BC^2=20\)

\(\Leftrightarrow BC=\sqrt{20}\)(cm)

Vậy \(BC=\sqrt{20}cm\)