CMR với n thuộc N* thì
(3^n+2-2^n+2+3^n-2^n) chia hết 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
2)
Bạn làm tương tự nha!
3n+2-2n+2+3n-2n
=(3n+2+3n)-(2n+2+2n)
=3n(32+1)-2n(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
Vì \(n\in N\)* nên \(2^{n-1}\ge1\)
Có 3n.10 chia hết cho 10
2n-1.10 chia hết cho 10
=>3n.10-2n-1.10 chia hết cho 10
Vậy N chia hết cho 10
Ta có : N = 3n + 2 - 2n + 2 + 3n - 2n
= (3n + 2 + 3n) - (2n + 2 + 2n)
= 3n(32 + 1) - 2n - 1(23 + 2)
= 3n.10 - 2n - 1.10
N = 10 . (3n - 2n - 1)
Mà n là số nguyên dương nên 3n , 2n - 1 là số nguyên => 3n - 2n - 1 là số nguyên
Nên 10 . (3n - 2n - 1) chia hết cho 10 \(\forall n\) nguyên dương
Vậy N chia hết cho 10 \(\forall n\) nguyên dương
câu b
2xn +11...1 n chữ số 1 = 3n-n+11...1
=3n+(11....1-n)
Ta thấy tổng các chữ số của 11...1 là n
=> 11...1 và n có cùng một số dư
=>(111...1-n) chia hết cho 3
Mà 3n chia hết cho 3
=>3n+(11...1-n) chia hết cho 3
Hay 2n +111...1 chia hết ch03
Vậy 2n+111....1 chia hết cho 3
Có mí chỗ mk không ghi là n chữ số 1 bạn ghi hộ mk nhé
Ta có:
\(A=10^n+2=10...00\left(n\text{ chữ số 0}\right)+2.\)
\(=10...02\left(n-1\text{ chữ số 0}\right)\)
Mà theo dấu hiệu nhận biết chia hết cho 3 thì: 1+2 =3 chia hết cho 3
Vậy ....
a) Vì tích là 1 số \(⋮\)2, nên tận cùng sẽ là 1 trong các c/s: 0,2,4,6,8.
b) Vì tích là 1 số \(⋮\)2 và 3 nên tận cùng sẽ là 1 trong các c/s chẵn và có tổng các c/s chia hết cho 3 .
Vì n là số tự nhiên
Nên n có thể là số chẵn hoặc số lẻ
Nếu n chẵn thì n = 2k
Khi đó (2k + 10) (2k + 15) = 2(k + 5) (2x + 15) chia hết cho 2
Nếu n là lẻ thì n = 2k + 1
Khi đó : (2k + 1 + 10) (2k + 1 + 15) = (2k + 11)(2k + 16) = (2k + 11).2(k + 8) chia hết cho 2