Tìm x , y \(\in N\)biết 2x + 624 = 5y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^x+624=5^y\) (1)
\(\Rightarrow2^x=5^y-624\)
Vì \(5^y\)luôn lẻ nên \(5^y-624\)lẻ hay VP lẻ
Suy ra \(2^x\)lẻ => \(2^x=1\)
\(\Rightarrow x=0.\)
Thay vào (1) suy ra : \(5^y=625=5^4\)
=>y=4.
Vậy x=0, y=4.
em nghĩ bài này lớp 7 hay 8 gì đó chứ nhỉ,nhưng em ko chắc đâu:v Bài 2a thì em chịu
1/ Ta có: \(\frac{n^2+2n+11}{n+1}=\frac{\left(n+1\right)^2+10}{n+1}=n+1+\frac{10}{n+1}\)
\(\Rightarrow n+1\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Rightarrow n\in\left\{-11;-6;-3;-2;0;1;4;9\right\}\)
2/ b) \(\left(x-y\right)\left(x+y\right)=2018=2.1009=1009.2=1.2018=2018.1\)
TH1: \(\left\{{}\begin{matrix}x-y=2\\x+y=1009\end{matrix}\right.\Leftrightarrow2x=1011\Leftrightarrow x=\frac{1011}{2}\left(L\right)\) (do x thuộc Z)
TH2: \(\left\{{}\begin{matrix}x-y=1009\\x+y=2\end{matrix}\right.\Leftrightarrow2x=1011\Leftrightarrow x=\frac{1011}{2}\left(L\right)\)
(do x thuộc Z)
TH3: \(\left\{{}\begin{matrix}x-y=1\\x+y=2018\end{matrix}\right.\Leftrightarrow2x=2019\Leftrightarrow x=\frac{2019}{2}\) (L)
TH4: \(\left\{{}\begin{matrix}x-y=2018\\x+y=1\end{matrix}\right.\Leftrightarrow2x=2019\Leftrightarrow x=\frac{2019}{2}\left(L\right)\)
Vậy không tồn tại các số x, y thuộc Z thỏa mãn phương trình
\(2,a;5^ynha\)
\(+,x=0\Rightarrow5^y=624+1=625=5^4\Rightarrow y=4\left(\text{thoa man}\right)\)
\(+,x\ne0\Rightarrow2^x+624\text{ chan mà:}5^y\text{ le}\Rightarrow\text{ loai}\)
\(x^2-y^2=2018\Leftrightarrow\left(x+y\right)\left(x-y\right)=2018\text{ là số chan mà:}x+y-\left(x-y\right)=2y\left(\text{ là số chan}\right)\Rightarrow\text{ x+y và: x-y cùng chan hoac cùng le mà:}\left(x+y\right)\left(x-y\right)=2018\Rightarrow\text{ x+y và: x-y cùng chan}\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\text{ mà:}2018\text{ không chia hết cho }4\text{ nên không tìm đ}ư\text{oc x,y thoa man đề bài}\)
với y=0 thì\(5^y\)=1
mà \(2^x\)+624\(\ge\)0
\(\Rightarrow\)y\(\ne\)0
\(\Rightarrow\)y\(\ge\)1
với y\(\ge\)1 thì \(5^y=...5\)
để \(2^x+624=...5\)
thì \(2^x\)=...1
\(\Rightarrow x=0\)
\(\Rightarrow\)\(2^x+624=2^0+624=1+624=625\)=\(5^4\)
\(\Rightarrow\)y=4
Vậy x=0 và y=4
=>5y-2x=624
5y>624
=>2x<624
=>x<10
Ta có bảng sau
x | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
2x | 512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 |
5y | 1136 | 880 | 752 | 688 | 656 | 640 | 632 | 628 | 626 |
y | ??? | ??? | ??? | ??? | ??? | ??? | ??? | ??? | ??? |
Ko tìm được x;y
k minh nha
2x là số chẵn
624 là số chẵn
5y là số lẻ
Mà số chẵn cộng số chẵn bằng số chẵn
\(\Rightarrow2^x+624\ne5^y\)
\(\Rightarrow\)Không tìm được x,y thích hợp
Vampire Princess bỏ qua trường hợp x=0 rồi