K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2022

a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

x-21-13-3
x315-1

b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

x-21-113-13
x3115-11

 

c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x+71-12-2
x-6-8-5-9

 

25 tháng 8 2019

a) x = -1.                      b) x = 4 hoặc x = 5.

c) x = ± 2 .                  d) x = 1 hoặc x = 2.

23 tháng 8 2018

21 tháng 12 2021

b: -7<x<7

28 tháng 12 2017

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:
a. $(x^2-9)(5x+15)=0$

$\Rightarrow x^2-9=0$ hoặc $5x+15=0$
Nếu $x^2-9=0$

$\Rightarrow x^2=9=3^2=(-3)^2$

$\Rightarrow x=3$ hoặc $-3$
Nếu $5x+15=0$

$\Rightarrow x=-3$
b.

$x^2-8x=0$
$\Rightarrow x(x-8)=0$

$\Rightarrow x=0$ hoặc $x-8=0$

$\Rightarrow x=0$ hoặc $x=8$

c. 

$5+12(x-1)^2=53$

$12(x-1)^2=53-5=48$

$(x-1)^2=48:12=4=2^2=(-2)^2$

$\Rightarrow x-1=2$ hoặc $x-2=-2$
$\Rightarrow x=3$ hoặc $x=0$

d.

$(x-5)^2=36=6^2=(-6)^2$
$\Rightarrow x-5=6$ hoặc $x-5=-6$

$\Rightarrow x=11$ hoặc $x=-1$

e.

$(3x-5)^3=64=4^3$

$\Rightarrow 3x-5=4$

$\Rightarrow 3x=9$

$\Rightarrow x=3$

f.

$4^{2x}+2^{4x+3}=144$
$2^{4x}+2^{4x}.8=144$

$2^{4x}(1+8)=144$

$2^{4x}.9=144$

$2^{4x}=144:9=16=2^4$

$\Rightarrow 4x=4\Rightarrow x=1$

20 tháng 3 2020

a) (x2-1)(x2-4)<0

=> x2-1 và x2-4 trái dấu nhau

Ta thấy: x2 >=0 với mọi x => x2-1 > x2-4 

=> \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\Leftrightarrow}\hept{\begin{cases}x>\pm1\\x< \pm2\end{cases}}}\)

=> Không có giá trị củ x thỏa mãn đề bài

6 tháng 8 2020

nếu x.2 mà để như vậy thì ko hợp lý thì 2 luôn đứng trước x nếu ghi sát nên chắc đề là x^2

\(\left(x^2-5\right)\left(x^2-25\right)\)

để\(\left(x^2-5\right)\left(x^2-25\right)\)là số nguyên âm 

\(\Rightarrow\left(x^2-5\right)\left(x^2-25\right)< 0\)

=> x^2-5 và x^2-25 khác dấu

\(th1\orbr{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2>5\\x^2< 25\end{cases}}}\Leftrightarrow5< x^2< 25\left(tm\right)\)

\(th2\orbr{\begin{cases}x^2-5< 0\\x^2-25>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2< 5\\x^2>25\end{cases}}}\Leftrightarrow25< x^2< 5\left(vl\right)\)

theo đề x là số nguyên => x^2 là số chính phương thỏa mãn \(5< x^2< 25\)

\(\Rightarrow x^2=9;x^2=16\)

\(\hept{\begin{cases}x^2=9\Leftrightarrow x=\pm3\\x^2=16\Leftrightarrow x=\pm4\end{cases}}\)

vậy với \(x=\pm3;x=\pm4\)thì \(\left(x^2-5\right)\left(x^2-25\right)\)là số nguyên âm

30 tháng 1 2018

      \(\left(x-3\right)\left(4-x\right)>0\)

\(\Rightarrow\)\(\hept{\begin{cases}x-3>0\\4-x>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>3\\x< 4\end{cases}}\)  (vô lí)

hoặc    \(\hept{\begin{cases}x-3< 0\\4-x< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 3\\x>4\end{cases}}\)(vô lí)

Vậy      \(x=\Phi\)

8 tháng 12 2022

a