Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
c: \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\\x=-5\\x=5\end{matrix}\right.\)
\(a,\left(-31\right).\left(x+7\right)=0\\ \Rightarrow x+7=0\\ \Rightarrow x=-7\\ b,\left(8-x\right).\left(x+13\right)=0\\ \Rightarrow\left[{}\begin{matrix}8-x=0\\x+13=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-13\end{matrix}\right.\\ c,\left(x^2-25\right)\left(3-x\right)=0\\ \Rightarrow\left(x-5\right)\left(x+5\right)\left(3-x\right)=0\\\Rightarrow \left[{}\begin{matrix}x-5=0\\x+5=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\\x=3\end{matrix}\right.\\ d,\left(x-3\right)\left(x^2+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x^2=-4\left(loại\right)\end{matrix}\right.\\ \Rightarrow x=3\)
a)\(\left(x2+7\right).\left(x2-49\right)< 0\)
\(\left(x2+7\right).\left(x2-49\right)< 0\) chứng tỏ hai vế \(\left(x2+7\right)\) và \(\left(x2-49\right)\) khác dấu nhau .
\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)
Vì \(\left(x2+7\right)\) > \(\left(x2-49\right)\)
Nên ta có:
\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}\left(x+7\right)=0\\\left(x-49\right)=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}x=-7\\x=49\end{matrix}\right.\)
Vậy hai số nguyên đó là -7 và 49 .
Còn phần còn lại bạn làm tương tự nhé !
=> x2 - 7 và x2 - 49 trái dấu
Nhận xét: x2 - 7 > x2 - 9 nên để x2 - 7 và x2 - 49 trái dấu thì x2 - 7 > 0 và x2 - 49 < 0
x2 - 7 > 0 => x2 > 7
x2 - 49 < 0 => x2 < 49
=> 7 < x2 < 49. Vì x nguyên nên x2 = 9; 16 ; 25; 36
x2 = 9 => x = -3 hoặc x = 3
x2 = 16 => x = -4 hoặc 4
x2 = 25 => x = -5 ; 5
x2 = 36 => x = 6;-6
Vậy ....
`(x^2+7)(x^2-49)<0`
Vì `x^2+7>=7>0`
`=>x^2-49<0`
`<=>x^2-7x+7x-49<0`
`<=>x(x-7)+7(x-7)<0`
`<=>(x-7)(x+7)<0`
Vì `x+7>x-7`
`=>` $\begin{cases}x+7>0\\x-7<0\\\end{cases}$
`=>` $\begin{cases}x>-7\\x<7\\\end{cases}$
`=>-7<x<7`
Vậy `-7<x<7`
Ta có: \(\left(x^2+7\right)\left(x^2-49\right)< 0\)
mà \(x^2+7>0\)
nên \(x^2-49< 0\)
\(\Leftrightarrow x^2< 49\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-7\\x< 7\end{matrix}\right.\)
Vậy: -7<x<7
a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+7 | 1 | -1 | 2 | -2 |
x | -6 | -8 | -5 | -9 |
\(a,\left(8+x\right)\left(6-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}8+x=0\\6-x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-8\\x=6\end{matrix}\right.\\ b,x^2-5x=0\\ \Rightarrow x\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
a) (8+x).(6-x)=0
<=> 8+x = 0 hoặc 6-x = 0
=> x = -8 hoặc x = 6
b) c) x^2 - 5x=0
<=> x^2 = 0 hoặc -5x = 0
=> x = 0 hoặc x = 5
Bài 1:
a) Ta có: (x2 - 36)(x2 -25)= 0
\(\Leftrightarrow\)(x2 - 62)(x2 - 52)= 0
\(\Leftrightarrow\)(x - 6)(x + 6)(x - 5)(x + 5)= 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\)
\(\orbr{\begin{cases}x-5=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
b) \(CMTT\)câu a
Ta có:\(\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
\(\orbr{\begin{cases}x=8\\x=-8\end{cases}}\)
b: -7<x<7