Cho a, b, c\(\ne\)0, thỏa mãn:
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}-\frac{a^3+b^3+c^3}{abc}=2\)
Tính \(H=\left(\left(a+b\right)^{2017}-c^{2017}\right)\left(\left(b+c\right)^{2017}-a^{2017}\right)\left(\left(c+a\right)^{2017}-b^{2017}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a^3+b^3+c^3=3abc\)
=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Mà \(a+b+c\ne0\)
=> \(a^2+b^2+c^2-ab-bc-ac=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Do \(VT\ge0\)
=> a=b=c
Thay vào ta được
P=2018^3
1
a) Ta có \(\frac{b^2-c^2}{\left(a+b\right).\left(a+c\right)}=\frac{\left(b+c\right)\left(b-c\right)}{\left(a+b\right).\left(a+c\right)}=\frac{\left(b+c\right)\left(a+b-a-c\right)}{\left(a+b\right).\left(a+c\right)}\)
\(=\frac{\left(b+c\right)\left(a+b\right)-\left(b+c\right).\left(a+c\right)}{\left(a+b\right).\left(a+c\right)}=\frac{b+c}{a+c}-\frac{b+c}{a+b}\)
Tương tự \(\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}=\frac{c+a}{b+a}-\frac{c+a}{b+c}\)
\(\frac{a^2-b^2}{\left(c+a\right).\left(c+b\right)}=\frac{a+b}{c+b}-\frac{a+b}{c+a}\)
Do đó \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}+\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}+\frac{a^2-b^2}{\left(c+a\right).\left(c+b\right)}\)
\(=\frac{b+c}{a+c}-\frac{b+c}{a+b}+\frac{c+a}{b+a}-\frac{c+a}{b+c}+\frac{a+b}{c+b}-\frac{a+b}{c+a}\)
\(=\frac{b+c-a-b}{a+c}+\frac{a+b-c-a}{b+c}+\frac{c+a-b-c}{a+b}\)
\(=\frac{c-a}{a+c}+\frac{b-c}{b+c}+\frac{a-b}{a+b}\)
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc=0\)
\(\Rightarrow ab^2+ac^2+bc^2+ba^2+c\left(a+b\right)^2=0\)
\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)
\(\Rightarrow\left(a+b\right)\left(ab+c^2+ca+cb\right)=0\)
\(\Rightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
Từ đó a = -b hoặc b = -c hoặc c = -a
Nếu a = -b mà \(a^3+b^3+c^3=1\Rightarrow\left(-b\right)^3+b^3+c^3=1\Rightarrow c^3=1\Rightarrow c=1\)
Khi đó: \(A=\frac{1}{\left(-b\right)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{1^{2017}}=0+1=1\)
Tương tự với các trường hợp b = -c và a = -c, ta tính được A = 1
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Minh Tuấn - Toán lớp 8 - Học toán với OnlineMath