Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)
<=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1\)
<=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
<=> a + b + c = 0 hoặc a = b = c.
Th1: a + b + c = 0
=> a + b = - c ; a + c = -b ; b + c = -a.
Thế vào P :
\(P=\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)
\(=\left(\frac{a+b}{b}\right)\cdot\left(\frac{b+c}{c}\right)\cdot\left(\frac{c+a}{a}\right)\)
\(=-\frac{c}{b}.\frac{\left(-a\right)}{c}.\frac{\left(-b\right)}{a}=-1\)
TH2: a = b = c. THế vào P
\(P=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
Vậy: P = -1 nếu a + b + c = 0
hoặc P = 8 nếu a = b = c.
\(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)
Ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1=\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)
TH2: Nếu \(a+b+c\ne0\)\(\Rightarrow a=b=c\)
\(\Rightarrow\hept{\begin{cases}a+b=2b\\b+c=2c\\c+a=2a\end{cases}}\)\(\Rightarrow P=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)
Vậy \(P=-1\)hoặc \(P=8\)
Ta có: \(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=\frac{a-b}{2017-2018}=\frac{b-c}{2018-2019}=\frac{a-c}{2017-2019}.\)
\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{a-c}{-2}\)
\(\Rightarrow\frac{a-b}{-1}.\frac{b-c}{-1}=\left(\frac{a-c}{-2}\right)^2\)
\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(a-c\right)^2}{\left(-2\right)^2}\)
\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(a-c\right)^2}{4}.\)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(a-c\right)^2.1\)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(a-c\right)^2\left(đpcm\right).\)
Chúc bạn học tốt!
cộng thêm 1 của mỗi đẳng thức :
\(\frac{a}{b+c}+1=\frac{c}{a+b}+1=\frac{b}{c+a}+1\)
hay \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+b}=\frac{a+b+c}{c+a}\)
với a + b + c = 0 thì :
b + c = -a ; a + b = -c ; c + a = -b
nên \(20.\left(\frac{a}{b+c}\right)+3.\left(\frac{c}{a+b}\right)+1998.\left(\frac{b}{c+a}\right)=20.\left(\frac{a}{-a}\right)+3.\left(\frac{c}{-c}\right)+1998.\left(\frac{b}{-b}\right)\)
hay \(20.\left(-1\right)+3.\left(-1\right)+1998.\left(-1\right)=-20+\left(-3\right)+\left(-1998\right)=-2021\)
với a + b + c khác 0 thì : a = b = c
nên \(20.\left(\frac{a}{b+c}\right)+3.\left(\frac{c}{a+b}\right)+1998.\left(\frac{b}{c+a}\right)=20.\frac{1}{2}+3.\frac{1}{2}+1998.\frac{1}{2}=\frac{2021}{2}\)
Nếu a+b+c = 0 => Biểu thức = 20.(-1)+3.(-1)+1998.(-1) = -2021
Nếu a+b+c khác 0 thì :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
a/b+c = c/a+b = b/c+a = a+b+c/2a+2b+2c = 1/2
=> Biểu thức = 20.1/2+3.1/2+1998.1/2 = 2021/2
Vậy ............
k mk nha
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
+) Xét \(a+b+c=0\Rightarrow\left\{\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
\(B=\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)
+) Xét \(a+b+c\ne0\)
\(\left\{\begin{matrix}\frac{a+b-c}{c}=2\\\frac{b+c-a}{a}=2\\\frac{c+a-b}{b}=2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a+b=3c\\b+c=3a\\a+c=3b\end{matrix}\right.\)
\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{3c}{a}.\frac{3b}{c}.\frac{3a}{b}\)
\(=3.3.3=27\)
Vậy B = -1 hoặc B = 27
ta có (a+b-c/c)+2=(a-b+c/b)+2=(-a+b+c/a)+2
=>a+b-c+2c/c=a-b+c+2b/b=-a+b+c+2a/a
=>a+b+c/c=a+b+c/b=a+b+c/a (1)
Trường hợp 1
Nếu a+b+c=0 => a+b=-c
=> b+c=-a
=> a+c=-b
M= (-c)(-a)(-a)/abc = -1
Trường hợp 2
Từ (1) =>(a+b+c). 1/c =(a+b+c). 1/b =(a+b+c). 1/a
=>1/a=1/b=1/c
Từ (1) =>3(a+b+c)/a+b+c=3
hay (a+b/c)+1=(a+c/b)+1=(b+c/a)=2
Nguyễn Trọng Tâm Đạt làm sai một TH nhé =)
trường hợp 2
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
\(2+\frac{a+b-c}{c}=2+\frac{a-b+c}{b}=2+\frac{-a+b+c}{a}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào M ta có
\(M=\frac{\left(b+b\right).\left(b+c\right).\left(c+a\right)}{a.b.c}=\frac{2a.2a.2a}{aaa}=\frac{8.a^3}{a^3}=8\)
không làm thì thôi đi rối mắt kệ các bạn chứ ai hỏi đâu mà phô ra
Thùy Giang : bn nói đúng , bọn này ngu mà cứ thích cmt linh tinh