Tìm nghiệm của đa thức
H(x) = -x^2 + 4x - 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x3 - 4x + 5x2 - 2x3 + 8 - 5x2 - x3
= 3x3 - 2x3 - x3 + 5x2 - 5x2 - 4x + 8
= -4x + 8
ta có: -4x + 8 = 0
vì \(-4x\le0\) với mọi x
=> \(-4x+8\le-8< 0\)
=> đa thức trên ko có nghiệm
t i c k nhé
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2
`f( x) = 3x -6`
`-> 3x-6=0`
`=> 3x=0+6`
`=> 3x=6`
`=>x=6:3`
`=>x=2`
__
`h( x) =-5 x+30`
`-> -5x +30=0`
`=> -5x=0-30`
`=>-5x=-30`
`=>x=6`
__
`g(x) = ( x-3)(16-4x)`
`-> ( x-3)(16-4x)=0`
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\16-4x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\4x=16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
__
`k( x) = x^2-81`
`->x^2-81=0`
`=> x^2=81`
`=> x^2 =+-9^2`
\(\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
\(3x-6=0\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy nghiệm của đa thức f(x) là \(x=2\)
\(-5x+30=0\)
\(\Rightarrow-5x=-30\)
\(\Rightarrow x=6\)
Vậy nghiệm của đa thức h(x) là \(x=6\)
\(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\16-4x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\4x=16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy nghiệm của đa thức g(x) là \(x\in\left\{3;4\right\}\)
\(x^2-81=0\)
\(\Rightarrow x^2=81\)
\(\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
Vậy nghiệm của đa thức k(x) là \(x\in\left\{9;-9\right\}\)
Bài làm:
Ta có: \(A\left(x\right)=x^3+3x^2-4x=x\left(x-1\right)\left(x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\\x+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-4\end{cases}}\)là nghiệm của A(x)
Vậy x = 0 là nghiêm của A(x)
Mà tại x = 0 thì giá trị của B(x) là:
\(B\left(0\right)=-2.0^3+3.0^2+4.0+1=1\)
=> x = 0 không là nghiệm của B(x)
\(H\left(x\right)=-x^2+4x-3\)
H(x) có nghiệm\(\Leftrightarrow-x^2+4x-3=0\)
* Tính \(\Delta=b^2-4ac\)
Phương trình có các hệ số là a = -1, b = 4, c = -3
\(\Delta=4^2-4.\left(-1\right).\left(-3\right)=16+12=28\)
* Do \(\Delta>0\), áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt:
\(x_1=\frac{-4+\sqrt{28}}{-2}=\frac{-\left(2\sqrt{7}-4\right)}{2}\); \(x_2=\frac{-4-\sqrt{28}}{-2}=\frac{-\left(-2\sqrt{7}-4\right)}{2}\)
Oops, cho sửa từ dòng 5
\(\Delta=4^2-4.\left(-1\right).\left(-3\right)=16-12=4\)
*Do \(\Delta>0\), áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt:
\(x_1=\frac{-4+\sqrt{4}}{-2}=1\);\(x_2=\frac{-4-\sqrt{4}}{-2}=3\)