K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2020

a) P(x) = 2x3 - 2x - x2 - x3 + 3x + 2

=> P(x) = (2x3 - x3) + (-2x + 3x) - x2 + 2

=> P(x) = x3 + x - x2 + 2

Sắp xếp : P(x) = x3 - x2 + x + 2

Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1

=> Q(x) = (-4x3 + 3x3) + (5x2 - 4x2) + (-3x + 4x) + 1

=> Q(x) = -x3 + x2 + x + 1

Sắp xếp : Q(x) = -x3 + x2 + x + 1

b) H(x) = P(x) + Q(x)

=> H(x) = (x3 + x - x2 + 2) + (-x3 + x2 + x + 1)

=> H(x) = x3 + x - x2 + 2 - x3 + x2 +x + 1

=> H(x) = (x3 - x3) + (x + x) + (-x2 + x2) + (2 + 1)

=> H(x) = 2x + 3

K(x) = P(x) - Q(x)

=> K(x) = (x3 + x - x2 + 2) - (-x3 + x2 + x + 1)

=> K(x) = x3 + x - x2 + 2 + x3 - x2 - x - 1

=> K(x) = (x3 + x3) + (x - x) + (-x2 - x2) + (2 - 1)

=> K(x) = 2x3 - 2x2 + 1

c) Q(2) = -23 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1( m k bt (-2)3 hay -23 nx nên thông cảm))

P(-1) = (-1)3 - (-1)2 + (-1) + 2 = -1 - 1 - 1 + 2 = -1

d) Để H(x) có nghiệm => 2x + 3 = 0 => 2x = -3 => \(x=-\frac{3}{2}\)

Vậy x = -3/2 là nghiệm của đa thức H(x)

P/s : K chắc :))

20 tháng 6 2020

a) Mình làm tắt

P(x) = x3 - x2 + x + 2

Q(x) = -x3 + x2 + x + 1

b) H(x) = P(x) + Q(x) 

            =  x3 - x2 + x + 2 - x3 + x2 + x + 1

            = 2x + 3

K(x) = P(x) - Q(x)

        = x3 - x2 + x + 2 - ( -x3 + x2 + x + 1 )

        = x3 - x2 + x + 2 + x3 - x2 - x - 1

        = 2x3 - 2x2 + 1

c) Q(2) = -(2)3 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1

P(-1) =  13 - 12 + 1 + 2 = 1 - 1 + 1 + 2 = 3

d) H(x) = 2x + 3

H(x) = 0 <=> 2x + 3 = 0

              <=> 2x = -3

              <=> = -3/2

Vậy nghiệm của H(x) = -3/2

a: \(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)

Bậc là 5

\(Q\left(x\right)=-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)

Bậc là 5

b: H(x)=P(x)+Q(x)

\(=5x^5-4x^4-2x^3+4x^2+3x+6-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)

=10x+6,25

c: Để H(x)=0 thì 10x+6,25=0

hay x=-0,625

9 tháng 8 2017

a)  \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)\(=\left(2x^3-x^3\right)+x^2+\left(3x-2x\right)+2=x^3+x^2+x+2\)

   \(Q\left(x\right)=4x^3-5x^2+3x-4x-3x^3+4x^2+1\) 

Q(x)  \(=\left(4x^3-3x^3\right)+\left(4x^2-5x^2\right)+\left(3x-4x\right)+1\)\(=x^3-x^2-x+1\)

b) \(P\left(x\right)+Q\left(x\right)=2x^3+3\)\(P\left(x\right)-Q\left(x\right)=2x^2+2x+1\)

16 tháng 4 2018

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x

=x^5+7x^4−9x^3−3x^2+x^2−1/4x

=x^5+7x^4−9x^3−2x^2−1/4x

Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4

=−x^5+5x^4−2x^3+x^2+3x^2−1/4

=−x^5+5x^4−2x^3+4x^2−1/4

b)

P(x)+Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4

=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4

=12x^4−11x^3+2x^2−1/4x−1/4

P(x)−Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4

=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4

=2x5+2x4−7x3−6x2−1/4x−1/4

c) Ta có

P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0

⇒x=0là nghiệm của P(x).

Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0

⇒x=0không phải là nghiệm của Q(x).

a: P(x)=5x^3+3x^2-2x-5

\(Q\left(x\right)=5x^3+2x^2-2x+4\)

b: P(x)-Q(x)=x^2-9

P(x)+Q(x)=10x^3+5x^2-4x-1

c: P(x)-Q(x)=0

=>x^2-9=0

=>x=3; x=-3

d: C=A*B=-7/2x^6y^4

a: P(x)=-x^3+2x^3-x^2+3x^2+x-1=x^3+2x^2+x-1

Q(x)=-3x^3+2x^3-x^2+3x-4x+3=-x^3-x^2-x+3

b: H(x)=P(x)+Q(X)

=x^3+2x^2+x-1-x^3-x^2-x+3

=x^2+2

c: H(-1)=H(1)=1+2=3

d: H(x)=x^2+2>=2>0 với mọi x

=>H(x) ko có nghiệm

17 tháng 6 2019

Bài 1 ( a )

\(A_x=-4x^5-x^3+4x^2+5x+9+4x^5-6x^2-2\)

\(=-x^3-2x^2+5x-7\)

\(B_x=-3x^4-2x^3+10x^2-8x+5x^3-7-2x^3+8x\)

\(=-3x^4+x^3+10x^2-7\)

17 tháng 6 2019

Bài 1 ( b )

\(P_x=\left(-x^3-2x^2+5x-7\right)+\left(3x^4+x^3+10x-7\right)\)

\(=-x^3-2x^2+5x-7+3x^4+x^3+10x-7\)

\(=3x^4-2x^2+15x-14\)

\(Q_x=\left(-x^3-2x^2+5x-7\right)-\left(3x^4+x^3+10x-7\right)\)

\(=-x^3-2x^2+5x-7-3x^4-x^3-10x+7\)

\(=-3x^4-2x^3-5x\)

`C(x)=`\(5-8x^4+2x^3+x+5x^4+x^2-4x^3\)

`C(x)= (-8x^4+5x^4)+(2x^3-4x^3)+x^2+x+5`

`C(x)= -3x^4-2x^3+x^2+x+5`

 

`D(x)=`\(\left(3x^5+x^4-4x\right)-\left(4x^3-7+2x^4+3x^5\right)\)

`D(x)= 3x^5+x^4-4x-4x^3+7-2x^4-3x^5`

`D(x)=(3x^5-3x^5)+(x^4-2x^4)-4x^3-4x+7`

`D(x)=-x^4-4x^3-4x+7`

 

`P(x)=C(x)+D(x)`

`P(x)=( -3x^4-2x^3+x^2+x+5)+(-x^4-4x^3-4x+7)`

`P(x)=-3x^4-2x^3+x^2+x+5-x^4-4x^3-4x+7`

`P(x)=(-3x^4-x^4)+(-2x^3-4x^3)+x^2+(x-4x)+(5+7)`

`P(x)=-4x^4-6x^3+x^2-3x+12`

 

`Q(x)=C(x)-D(x)`

`Q(x)=( -3x^4-2x^3+x^2+x+5)-(-x^4-4x^3-4x+7)`

`Q(x)=-3x^4-2x^3+x^2+x+5+x^4+4x^3+4x-7`

`Q(x)=(-3x^4+x^4)+(-2x^3+4x^3)+x^2+(x+4x)+(5-7)`

`Q(x)=-2x^4+2x^3+x^2+5x-2`

 

`F(x)=Q(x)-(-2x^4+2x^3+x^2-12)`

`F(x)=(-2x^4+2x^3+x^2+5x-2)-(-2x^4+2x^3+x^2-12)`

`F(x)=-2x^4+2x^3+x^2+5x-2+2x^4-2x^3-x^2+12`

`F(x)=(-2x^4+2x^4)+(2x^3-2x^3)+(x^2-x^2)+5x+(-2+12)`

`F(x)=5x+10`

Đặt `5x+10=0`

`\Leftrightarrow 5x=0-10`

`\Leftrightarrow 5x=-10`

`\Leftrightarrow x=-10 \div 5`

`\Leftrightarrow x=-2`

Vậy, nghiệm của đa thức là `x=-2.`