so sánh \(\frac{1}{7}+\frac{1}{8}+...+\frac{1}{49}v\text{ới}\frac{21}{25}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\frac{2}{x}=\frac{x}{8}\)
\(\Rightarrow x^2=2.8\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow x=4\)
\(b.\frac{-28}{4}\le x\le\frac{-21}{7}\)
\(\Rightarrow\frac{-196}{28}\le\frac{28x}{28}\le\frac{-84}{28}\)
\(\Rightarrow-196\le28x\le-84\)
Mà \(28x⋮28\)
\(\Rightarrow28x\in\left\{-84;-112;-140;-168;-196\right\}\)
\(\Rightarrow x\in\left\{-3;-4;-5;-6;-7\right\}\)
1.
a) 5/8 x 4/10 + 2/3 =
= 1/4+ 2/3 = 11/12
b)5/12 x 4/7+5/12 x3/7
=5/12 x (4/7 +3/7)
=5/12 x1 = 5/12
c)(4/5 + 3/10 - 1/5 ) x 6 : 4/7
= ( 8/10 + 3/10 + 2/10) x 6 x 7/4
=13/10 x 21/2
=273/20
2.
5/8 và 3/2
ta có 5/8 =10/16 ; 3/2 =24 /16
vì 24 /16 >10 /16 nên 3/2 > 5/8
b. tương tự như câu a nha
c 418/417 và 925 /926
418/417 > 1 ; 925 /926 < 1
vì 418 /417 >1 mà 925/926 < 1 nên 418 / 417 > 925 /926
chúc bạn học tốt nha !
GIẢ SỬ \(\frac{A}{B}=\frac{C}{D}\)
ĐẶT\(\frac{A}{B}=\frac{C}{D}=T\)=>A = BT , C = DT
TA CÓ\(\frac{\left(A^2+B^2\right)}{\left(C^2+D^2\right)}=\frac{\left(\left(B\cdot T\right)^2+B^2\right)}{\left(\left(D\cdot T\right)^2+D^2\right)}=\frac{\left(B^2\cdot\left(T^2+1\right)\right)}{\left(D^2\cdot\left(T^2+1\right)\right)}=\frac{B^2}{D^2}=\left(\frac{B}{D}\right)^2\left(1\right)\)
LẠI CÓ\(\frac{\left(A\cdot B\right)}{\left(C\cdot D\right)}=\frac{\left(B\cdot T\cdot B\right)}{\left(D\cdot T\cdot D\right)}=\frac{B^2}{D^2}=\left(\frac{B}{D}\right)^2\left(2\right)\)
TỪ (1) VÀ (2) \(\Rightarrow\frac{\left(A^2+B^2\right)}{\left(C^2+D^2\right)}=\frac{\left(A\cdot B\right)}{\left(C\cdot D\right)}\)( THÕA ĐỀ )
=> ĐIỀU GIẢ SỬ ĐÚNG => DPCM
vì \(\frac{7^{24}+1}{7^{25}+1}< 1< \frac{7^{49}+1}{7^{48}+1}\)
\(\Rightarrow\) \(\frac{7^{24}+1}{7^{25}+1}< \frac{7^{49+1}}{7^{48}+1}\Rightarrow A< B\)
Đề là chứng minh N < 1/4 sẽ đúng hơn
Ta có :
\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(\Rightarrow2^2.N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
Ta lại có :
\(4N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{n}\)
\(\Rightarrow N< \left(1-\frac{1}{n}\right):4=\frac{1}{4}\left(1-\frac{1}{n}\right)\)
Mà \(n\in N;n\ge2\)=> 1 -\(\frac{1}{n}\)< 1
=> \(N< \frac{1}{4}\left(1-\frac{1}{n}\right)< \frac{1}{4}\)
=> \(N< \frac{1}{4}\)( đpcm )